Skip to main content

Advertisement

Log in

The Potential of Stem Cells in Treatment of Traumatic Brain Injury

  • Neurotrauma (M Kumar, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available. Despite improving survival rate after TBI, treatment is lacking for brain functional recovery and structural repair in clinic. Recent studies have suggested that the mature brain harbors neural stem cells which have regenerative capacity following brain insults. Much progress has been made in preclinical TBI model studies in understanding the behaviors, functions, and regulatory mechanisms of neural stem cells in the injured brain. Different strategies targeting these cell population have been assessed in TBI models. In parallel, cell transplantation strategy using a wide range of stem cells has been explored for TBI treatment in pre-clinical studies and some in clinical trials. This review summarized strategies which have been explored to enhance endogenous neural stem cell-mediated regeneration and recent development in cell transplantation studies for post-TBI brain repair.

Recent Findings

Thus far, neural regeneration through neural stem cells either by modulating endogenous neural stem cells or by stem cell transplantation has attracted much attention. It is highly speculated that targeting neural stem cells could be a potential strategy to repair and regenerate the injured brain.

Summary

Neuroprotection and neuroregeneration are major aspects for TBI therapeutic development. With technique advancement, it is hoped that stem cell-based therapy targeting neuroregeneration will be able to translate to clinic in not so far future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Coronado VG, McGuire LC, Sarmiento K, Bell J, Lionbarger MR, Jones CD, et al. Trends in traumatic brain injury in the U.S. and the public health response: 1995-2009. J Saf Res. 2012;43(4):299–307. https://doi.org/10.1016/j.jsr.2012.08.011.

    Article  Google Scholar 

  2. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124(3):319–35. https://doi.org/10.1002/cne.901240303.

    Article  CAS  PubMed  Google Scholar 

  3. Lois C, Alvarez-Buylla A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A. 1993;90(5):2074–7. https://doi.org/10.1073/pnas.90.5.2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sailor KA, Schinder AF, Lledo PM. Adult neurogenesis beyond the niche: its potential for driving brain plasticity. Curr Opin Neurobiol. 2017;42:111–7. https://doi.org/10.1016/j.conb.2016.12.001.

    Article  CAS  PubMed  Google Scholar 

  5. Sun D. Endogenous neurogenic cell response in the mature mammalian brain following traumatic injury. Exp Neurol. 2016;275(Pt 3):405–10. https://doi.org/10.1016/j.expneurol.2015.04.017.

    Article  CAS  PubMed  Google Scholar 

  6. Gritti A, Bonfanti L, Doetsch F, Caille I, Varez-Buylla A, Lim DA, et al. Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci. 2002;22(2):437–45.

    CAS  PubMed  Google Scholar 

  7. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature. 2002;415(6875):1030–4. https://doi.org/10.1038/4151030a.

    Article  PubMed  CAS  Google Scholar 

  8. Zhao C, Teng EM, Summers RG Jr, Ming GL, Gage FH. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci. 2006;26(1):3–11. https://doi.org/10.1523/JNEUROSCI.3648-05.2006.

    Article  CAS  PubMed  Google Scholar 

  9. Ge S, Yang CH, Hsu KS, Ming GL, Song H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron. 2007;54(4):559–66. https://doi.org/10.1016/j.neuron.2007.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Paus M, Kohl Z, Ben Abdallah NM, Galter D, Gillardon F, Winkler J. Enhanced dendritogenesis and axogenesis in hippocampal neuroblasts of LRRK2 knockout mice. Brain Res. 2013;1497:85–100. https://doi.org/10.1016/j.brainres.2012.12.024.

    Article  CAS  PubMed  Google Scholar 

  11. Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature. 2004;429(6988):184–7. https://doi.org/10.1038/nature02553.

    Article  CAS  PubMed  Google Scholar 

  12. Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE, Gage FH, et al. Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci. 2008;11(8):901–7. https://doi.org/10.1038/nn.2156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tronel S, Fabre A, Charrier V, Oliet SH, Gage FH, Abrous DN. Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons. Proc Natl Acad Sci U S A. 2010;107(17):7963–8. https://doi.org/10.1073/pnas.0914613107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kempermann G, Jessberger S, Steiner B, Kronenberg G. Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 2004;27(8):447–52. https://doi.org/10.1016/j.tins.2004.05.013.

    Article  CAS  PubMed  Google Scholar 

  15. Jagasia R, Steib K, Englberger E, Herold S, Faus-Kessler T, Saxe M, et al. GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci. 2009;29(25):7966–77. https://doi.org/10.1523/JNEUROSCI.1054-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mizrahi A. Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb. Nat Neurosci. 2007;10(4):444–52. https://doi.org/10.1038/nn1875.

    Article  CAS  PubMed  Google Scholar 

  17. Belluzzi O, Benedusi M, Ackman J, LoTurco JJ. Electrophysiological differentiation of new neurons in the olfactory bulb. J Neurosci. 2003;23(32):10411–8.

    CAS  PubMed  Google Scholar 

  18. Petreanu L, Alvarez-Buylla A. Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci. 2002;22(14):6106–13.

    CAS  PubMed  Google Scholar 

  19. Lledo PM, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci. 2006;7(3):179–93. https://doi.org/10.1038/nrn1867.

    Article  CAS  PubMed  Google Scholar 

  20. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development. 2003;130(2):391–9. https://doi.org/10.1242/dev.00203.

    Article  CAS  PubMed  Google Scholar 

  21. Crespo D, Stanfield BB, Cowan WM. Evidence that late-generated granule cells do not simply replace earlier formed neurons in the rat dentate gyrus. Exp Brain Res. 1986;62(3):541–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kaplan MS, McNelly NA, Hinds JW. Population dynamics of adult-formed granule neurons of the rat olfactory bulb. J Comp Neurol. 1985;239(1):117–25. https://doi.org/10.1002/cne.902390110.

    Article  CAS  PubMed  Google Scholar 

  23. Snyder JS, Kee N, Wojtowicz JM. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol. 2001;85(6):2423–31. https://doi.org/10.1152/jn.2001.85.6.2423.

    Article  CAS  PubMed  Google Scholar 

  24. Deng W, Saxe MD, Gallina IS, Gage FH. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci. 2009;29(43):13532–42. https://doi.org/10.1523/JNEUROSCI.3362-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P, et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 2009;325(5937):210–3. https://doi.org/10.1126/science.1173215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH. Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev. 2014;94(4):991–1026. https://doi.org/10.1152/physrev.00004.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brunner J, Neubrandt M, Van-Weert S, Andrasi T, Kleine Borgmann FB, Jessberger S, et al. Adult-born granule cells mature through two functionally distinct states. elife. 2014;3:e03104.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moreno MM, Linster C, Escanilla O, Sacquet J, Didier A, Mandairon N. Olfactory perceptual learning requires adult neurogenesis. Proc Natl Acad Sci U S A. 2009;106(42):17980–5. https://doi.org/10.1073/pnas.0907063106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Breton-Provencher V, Lemasson M, Peralta MR III, Saghatelyan A. Interneurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors. J Neurosci. 2009;29(48):15245–57. https://doi.org/10.1523/JNEUROSCI.3606-09.2009.

    Article  CAS  PubMed  Google Scholar 

  30. Sakamoto M, Kageyama R, Imayoshi I. The functional significance of newly born neurons integrated into olfactory bulb circuits. Front Neurosci. 2014;8:121.

    PubMed  PubMed Central  Google Scholar 

  31. Bergami M, Masserdotti G, Temprana SG, Motori E, Eriksson TM, Gobel J, et al. A critical period for experience-dependent remodeling of adult-born neuron connectivity. Neuron. 2015;85(4):710–7. https://doi.org/10.1016/j.neuron.2015.01.001.

    Article  CAS  PubMed  Google Scholar 

  32. Fidaleo M, Cavallucci V, Pani G Nutrients, neurogenesis and brain ageing: from disease mechanisms to therapeutic opportunities. Biochem Pharmacol. 2017.

  33. Gould E, Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry. 1999;46(11):1472–9. https://doi.org/10.1016/S0006-3223(99)00247-4.

    Article  CAS  PubMed  Google Scholar 

  34. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386(6624):493–5. https://doi.org/10.1038/386493a0.

    Article  CAS  PubMed  Google Scholar 

  35. Chirumamilla S, Sun D, Bullock MR, Colello RJ. Traumatic brain injury induced cell proliferation in the adult mammalian central nervous system. J Neurotrauma. 2002;19(6):693–703. https://doi.org/10.1089/08977150260139084.

    Article  CAS  PubMed  Google Scholar 

  36. Rice AC, Khaldi A, Harvey HB, Salman NJ, White F, Fillmore H, et al. Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp Neurol. 2003;183(2):406–17. https://doi.org/10.1016/S0014-4886(03)00241-3.

    Article  CAS  PubMed  Google Scholar 

  37. Dash PK, Mach SA, Moore AN. Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J Neurosci Res. 2001;63(4):313–9. https://doi.org/10.1002/1097-4547(20010215)63:4<313::AID-JNR1025>3.0.CO;2-4.

    Article  CAS  PubMed  Google Scholar 

  38. Gao X, Enikolopov G, Chen J. Moderate traumatic brain injury promotes proliferation of quiescent neural progenitors in the adult hippocampus. Exp Neurol. 2009;219(2):516–23. https://doi.org/10.1016/j.expneurol.2009.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Villasana LE, Westbrook GL, Schnell E. Neurologic impairment following closed head injury predicts post-traumatic neurogenesis. Exp Neurol. 2014;261:156–62. https://doi.org/10.1016/j.expneurol.2014.05.016.

    Article  CAS  PubMed  Google Scholar 

  40. Bye N, Carron S, Han X, Agyapomaa D, Ng SY, Yan E, et al. Neurogenesis and glial proliferation are stimulated following diffuse traumatic brain injury in adult rats. J Neurosci Res. 2011;89(7):986–1000. https://doi.org/10.1002/jnr.22635.

    Article  CAS  PubMed  Google Scholar 

  41. Sun D, McGinn MJ, Zhou Z, Harvey HB, Bullock MR, Colello RJ. Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery. Exp Neurol. 2007;204(1):264–72. https://doi.org/10.1016/j.expneurol.2006.11.005.

    Article  PubMed  Google Scholar 

  42. Emery DL, Fulp CT, Saatman KE, Schutz C, Neugebauer E, McIntosh TK. Newly born granule cells in the dentate gyrus rapidly extend axons into the hippocampal CA3 region following experimental brain injury. J Neurotrauma. 2005;22(9):978–88. https://doi.org/10.1089/neu.2005.22.978.

    Article  PubMed  Google Scholar 

  43. Blaiss CA, Yu TS, Zhang G, Chen J, Dimchev G, Parada LF, et al. Temporally specified genetic ablation of neurogenesis impairs cognitive recovery after traumatic brain injury. J Neurosci. 2011;31(13):4906–16. https://doi.org/10.1523/JNEUROSCI.5265-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. • Sun D, Daniels TE, Rolfe A, Waters M, Hamm R. Inhibition of injury-induced cell proliferation in the dentate gyrus of the hippocampus impairs spontaneous cognitive recovery after traumatic brain injury. J Neurotrauma. 2015;32(7):495–505. https://doi.org/10.1089/neu.2014.3545. This study reported the direct connection of injury-enhanced endogeneous neural stem cell proliferation in the dentate gyrus of hippocampus to post-TBI cognitive recovery.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7. https://doi.org/10.1038/3305.

    Article  CAS  PubMed  Google Scholar 

  46. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427(6976):740–4. https://doi.org/10.1038/nature02301.

    Article  CAS  PubMed  Google Scholar 

  47. Bhardwaj RD, Curtis MA, Spalding KL, Buchholz BA, Fink D, Bjork-Eriksson T, et al. Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci U S A. 2006;103(33):12564–8. https://doi.org/10.1073/pnas.0605177103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 2011;478(7369):382–6. https://doi.org/10.1038/nature10487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bergmann O, Liebl J, Bernard S, Alkass K, Yeung MS, Steier P, et al. The age of olfactory bulb neurons in humans. Neuron. 2012;74(4):634–9. https://doi.org/10.1016/j.neuron.2012.03.030.

    Article  CAS  PubMed  Google Scholar 

  50. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153(6):1219–27. https://doi.org/10.1016/j.cell.2013.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taylor SR, Smith C, Harris BT, Costine BA, Duhaime AC. Maturation-dependent response of neurogenesis after traumatic brain injury in children. J Neurosurg Pediatr. 2013;12(6):545–54. https://doi.org/10.3171/2013.8.PEDS13154.

    Article  PubMed  Google Scholar 

  52. Zheng W, Zhuge Q, Zhong M, Chen G, Shao B, Wang H, et al. Neurogenesis in adult human brain after traumatic brain injury. J Neurotrauma. 2013;30(22):1872–80. https://doi.org/10.1089/neu.2010.1579.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sgubin D, Aztiria E, Perin A, Longatti P, Leanza G. Activation of endogenous neural stem cells in the adult human brain following subarachnoid hemorrhage. J Neurosci Res. 2007;85(8):1647–55. https://doi.org/10.1002/jnr.21303.

    Article  CAS  PubMed  Google Scholar 

  54. Sun D, Bullock MR, McGinn MJ, Zhou Z, Altememi N, Hagood S, et al. Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp Neurol. 2009;216(1):56–65. https://doi.org/10.1016/j.expneurol.2008.11.011.

    Article  CAS  PubMed  Google Scholar 

  55. Sun D, Bullock MR, Altememi N, Zhou Z, Hagood S, Rolfe A, et al. The effect of epidermal growth factor in the injured brain after trauma in rats. J Neurotrauma. 2010;27(5):923–38. https://doi.org/10.1089/neu.2009.1209.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lee C, Agoston DV. Vascular endothelial growth factor is involved in mediating increased de novo hippocampal neurogenesis in response to traumatic brain injury. J Neurotrauma. 2010;27(3):541–53. https://doi.org/10.1089/neu.2009.0905.

    Article  PubMed  Google Scholar 

  57. Thau-Zuchman O, Shohami E, Alexandrovich AG, Leker RR. Vascular endothelial growth factor increases neurogenesis after traumatic brain injury. J Cereb Blood Flow Metab. 2010;30(5):1008–16. https://doi.org/10.1038/jcbfm.2009.271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao S, Yu A, Wang X, Gao X, Chen J. Post-injury treatment of 7,8-Dihydroxyflavone promotes neurogenesis in the hippocampus of the adult mouse. J Neurotrauma. 2016;33(22):2055–64. https://doi.org/10.1089/neu.2015.4036.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen L, Gao X, Zhao S, Hu W, Chen J. The small-molecule TrkB agonist 7, 8-Dihydroxyflavone decreases hippocampal newborn neuron death after traumatic brain injury. J Neuropathol Exp Neurol. 2015;74(6):557–67. https://doi.org/10.1097/NEN.0000000000000199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shi J, Longo FM, Massa SM. A small molecule p75(NTR) ligand protects neurogenesis after traumatic brain injury. Stem Cells. 2013;31(11):2561–74. https://doi.org/10.1002/stem.1516.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Y, Chopp M, Meng Y, Zhang ZG, Doppler E, Winter S, et al. Cerebrolysin improves cognitive performance in rats after mild traumatic brain injury. J Neurosurg. 2015;122(4):843–55. https://doi.org/10.3171/2014.11.JNS14271.

    Article  CAS  PubMed  Google Scholar 

  62. Chohan MO, Bragina O, Kazim SF, Statom G, Baazaoui N, Bragin D, Iqbal K, Nemoto E, Yonas H. Enhancement of neurogenesis and memory by a neurotrophic peptide in mild to moderate traumatic brain injury. Neurosurgery. 2014.

  63. Chen CC, Wei ST, Tsaia SC, Chen XX, Cho DY. Cerebrolysin enhances cognitive recovery of mild traumatic brain injury patients: double-blind, placebo-controlled, randomized study. Br J Neurosurg. 2013;27(6):803–7. https://doi.org/10.3109/02688697.2013.793287.

    Article  PubMed  Google Scholar 

  64. Xiong Y, Mahmood A, Meng Y, Zhang Y, Qu C, Schallert T, et al. Delayed administration of erythropoietin reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome following traumatic brain injury in rats: comparison of treatment with single and triple dose. J Neurosurg. 2010;113(3):598–608. https://doi.org/10.3171/2009.9.JNS09844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang Y, Chopp M, Mahmood A, Meng Y, Qu C, Xiong Y. Impact of inhibition of erythropoietin treatment-mediated neurogenesis in the dentate gyrus of the hippocampus on restoration of spatial learning after traumatic brain injury. Exp Neurol. 2012;235(1):336–44. https://doi.org/10.1016/j.expneurol.2012.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xiong Y, Mahmood A, Meng Y, Zhang Y, Zhang ZG, Morris DC, et al. Neuroprotective and neurorestorative effects of thymosin beta4 treatment following experimental traumatic brain injury. Ann N Y Acad Sci. 2012;1270(1):51–8. https://doi.org/10.1111/j.1749-6632.2012.06683.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Blaya MO, Bramlett HM, Naidoo J, Pieper AA, Dietrich WD. Neuroprotective efficacy of a proneurogenic compound after traumatic brain injury. J Neurotrauma. 2014;31(5):476–86. https://doi.org/10.1089/neu.2013.3135.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lu D, Qu C, Goussev A, Jiang H, Lu C, Schallert T, et al. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma. 2007;24(7):1132–46. https://doi.org/10.1089/neu.2007.0288.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Han X, Tong J, Zhang J, Farahvar A, Wang E, Yang J, et al. Imipramine treatment improves cognitive outcome associated with enhanced hippocampal neurogenesis after traumatic brain injury in mice. J Neurotrauma. 2011;28(6):995–1007. https://doi.org/10.1089/neu.2010.1563.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang Y, Neumann M, Hansen K, Hong SM, Kim S, Noble-Haeusslein LJ, et al. Fluoxetine increases hippocampal neurogenesis and induces epigenetic factors but does not improve functional recovery after traumatic brain injury. J Neurotrauma. 2011;28(2):259–68. https://doi.org/10.1089/neu.2010.1648.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Umschweif G, Liraz-Zaltsman S, Shabashov D, Alexandrovich A, Trembovler V, Horowitz M, et al. Angiotensin receptor type 2 activation induces neuroprotection and neurogenesis after traumatic brain injury. Neurotherapeutics. 2014;11(3):665–78. https://doi.org/10.1007/s13311-014-0286-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xie C, Cong D, Wang X, Wang Y, Liang H, Zhang X, et al. The effect of simvastatin treatment on proliferation and differentiation of neural stem cells after traumatic brain injury. Brain Res. 2015;1602:1–8.

    Article  CAS  PubMed  Google Scholar 

  73. Meng Y, Chopp M, Zhang Y, Liu Z, An A, Mahmood A, et al. Subacute intranasal administration of tissue plasminogen activator promotes neuroplasticity and improves functional recovery following traumatic brain injury in rats. PLoS One. 2014;9(9):e106238. https://doi.org/10.1371/journal.pone.0106238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Quintard H, Lorivel T, Gandin C, Lazdunski M, Heurteaux C. MLC901, a traditional Chinese medicine induces neuroprotective and neuroregenerative benefits after traumatic brain injury in rats. Neuroscience. 2014;277:72–86. https://doi.org/10.1016/j.neuroscience.2014.06.047.

    Article  CAS  PubMed  Google Scholar 

  75. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2(3):266–70. https://doi.org/10.1038/6368.

    Article  PubMed  Google Scholar 

  76. Xuan W, Vatansever F, Huang L, Hamblin MR. Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. J Biomed Opt. 2014;19(10):108003. https://doi.org/10.1117/1.JBO.19.10.108003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gaulke LJ, Horner PJ, Fink AJ, McNamara CL, Hicks RR. Environmental enrichment increases progenitor cell survival in the dentate gyrus following lateral fluid percussion injury. Brain Res Mol Brain Res. 2005;141(2):138–50. https://doi.org/10.1016/j.molbrainres.2005.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Piao CS, Stoica BA, Wu J, Sabirzhanov B, Zhao Z, Cabatbat R, et al. Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiol Dis. 2013;54:252–63. https://doi.org/10.1016/j.nbd.2012.12.017.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hentze H, Graichen R, Colman A. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol. 2007;25(1):24–32. https://doi.org/10.1016/j.tibtech.2006.10.010.

    Article  CAS  PubMed  Google Scholar 

  80. Wennersten A, Meier X, Holmin S, Wahlberg L, Mathiesen T. Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J Neurosurg. 2004;100(1):88–96. https://doi.org/10.3171/jns.2004.100.1.0088.

    Article  PubMed  Google Scholar 

  81. Gao J, Prough DS, McAdoo DJ, Grady JJ, Parsley MO, Ma L, et al. Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury. Exp Neurol. 2006;201(2):281–92. https://doi.org/10.1016/j.expneurol.2006.04.039.

    Article  CAS  PubMed  Google Scholar 

  82. Shear DA, Tate MC, Archer DR, Hoffman SW, Hulce VD, LaPlaca MC, et al. Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res. 2004;1026(1):11–22. https://doi.org/10.1016/j.brainres.2004.07.087.

    Article  CAS  PubMed  Google Scholar 

  83. Riess P, Zhang C, Saatman KE, Laurer HL, Longhi LG, Raghupathi R, et al. Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery. 2002;51(4):1043–52.

    PubMed  Google Scholar 

  84. Boockvar JA, Schouten J, Royo N, Millard M, Spangler Z, Castelbuono D, et al. Experimental traumatic brain injury modulates the survival, migration, and terminal phenotype of transplanted epidermal growth factor receptor-activated neural stem cells. Neurosurgery. 2005;56(1):163–71. https://doi.org/10.1227/01.NEU.0000145866.25433.FF.

    Article  PubMed  Google Scholar 

  85. Becerra GD, Tatko LM, Pak ES, Murashov AK, Hoane MR. Transplantation of GABAergic neurons but not astrocytes induces recovery of sensorimotor function in the traumatically injured brain. Behav Brain Res. 2007;179(1):118–25. https://doi.org/10.1016/j.bbr.2007.01.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bakshi A, Shimizu S, Keck CA, Cho S, LeBold DG, Morales D, et al. Neural progenitor cells engineered to secrete GDNF show enhanced survival, neuronal differentiation and improve cognitive function following traumatic brain injury. Eur J Neurosci. 2006;23(8):2119–34. https://doi.org/10.1111/j.1460-9568.2006.04743.x.

    Article  PubMed  Google Scholar 

  87. Ma H, Yu B, Kong L, Zhang Y, Shi Y. Neural stem cells over-expressing brain-derived neurotrophic factor (BDNF) stimulate synaptic protein expression and promote functional recovery following transplantation in rat model of traumatic brain injury. Neurochem Res. 2012;37(1):69–83. https://doi.org/10.1007/s11064-011-0584-1.

    Article  CAS  PubMed  Google Scholar 

  88. Blaya MO, Tsoulfas P, Bramlett HM, Dietrich WD. Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury. Exp Neurol. 2015;264:67–81. https://doi.org/10.1016/j.expneurol.2014.11.014.

    Article  CAS  PubMed  Google Scholar 

  89. Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci U S A. 1995;92(25):11879–83. https://doi.org/10.1073/pnas.92.25.11879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Richardson RM, Broaddus WC, Holloway KL, Sun D, Bullock MR, Fillmore HL. Heterotypic neuronal differentiation of adult subependymal zone neuronal progenitor cells transplanted to the adult hippocampus. Mol Cell Neurosci. 2005;28(4):674–82. https://doi.org/10.1016/j.mcn.2004.11.013.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang RL, Zhang L, Zhang ZG, Morris D, Jiang Q, Wang L, et al. Migration and differentiation of adult rat subventricular zone progenitor cells transplanted into the adult rat striatum. Neuroscience. 2003;116(2):373–82. https://doi.org/10.1016/S0306-4522(02)00696-6.

    Article  CAS  PubMed  Google Scholar 

  92. Sun D, Gugliotta M, Rolfe A, Reid W, McQuiston AR, Hu W, Young H. Sustained survival and maturation of adult neural stem/progenitor cells after transplantation into the injured brain. J Neurotrauma. 2011.

  93. Koutsoudaki PN, Papastefanaki F, Stamatakis A, Kouroupi G, Xingi E, Stylianopoulou F, et al. Neural stem/progenitor cells differentiate into oligodendrocytes, reduce inflammation, and ameliorate learning deficits after transplantation in a mouse model of traumatic brain injury. Glia. 2016;64(5):763–79. https://doi.org/10.1002/glia.22959.

    Article  PubMed  Google Scholar 

  94. Spurlock MS, Ahmed AI, Rivera KN, Yokobori S, Lee SW, Sam PN, et al. Amelioration of penetrating ballistic-like brain injury induced cognitive deficits after neuronal differentiation of transplanted human neural stem cells. J Neurotrauma. 2017;34(11):1981–95. https://doi.org/10.1089/neu.2016.4602.

    Article  PubMed  Google Scholar 

  95. Kukekov VG, Laywell ED, Suslov O, Davies K, Scheffler B, Thomas LB, et al. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol. 1999;156(2):333–44. https://doi.org/10.1006/exnr.1999.7028.

    Article  CAS  PubMed  Google Scholar 

  96. Arsenijevic Y, Villemure JG, Brunet JF, Bloch JJ, Deglon N, Kostic C, et al. Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol. 2001;170(1):48–62. https://doi.org/10.1006/exnr.2001.7691.

    Article  CAS  PubMed  Google Scholar 

  97. Brunet JF, Pellerin L, Arsenijevic Y, Magistretti P, Villemure JG. A novel method for in vitro production of human glial-like cells from neurosurgical resection tissue. Lab Investig. 2002;82(6):809–12. https://doi.org/10.1097/01.LAB.0000017166.26718.BB.

    Article  PubMed  Google Scholar 

  98. Brunet JF, Pellerin L, Magistretti P, Villemure JG. Cryopreservation of human brain tissue allowing timely production of viable adult human brain cells for autologous transplantation. Cryobiology. 2003;47(2):179–83. https://doi.org/10.1016/j.cryobiol.2003.08.005.

    Article  PubMed  Google Scholar 

  99. Roy NS, Benraiss A, Wang S, Fraser RA, Goodman R, Couldwell WT, et al. Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. J Neurosci Res. 2000;59(3):321–31. https://doi.org/10.1002/(SICI)1097-4547(20000201)59:3<321::AID-JNR5>3.0.CO;2-9.

    Article  CAS  PubMed  Google Scholar 

  100. Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G, Jiang L, et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med. 2003;9(4):439–47. https://doi.org/10.1038/nm837.

    Article  CAS  PubMed  Google Scholar 

  101. Windrem MS, Roy NS, Wang J, Nunes M, Benraiss A, Goodman R, et al. Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain. J Neurosci Res. 2002;69(6):966–75. https://doi.org/10.1002/jnr.10397.

    Article  CAS  PubMed  Google Scholar 

  102. Richardson RM, Holloway KL, Bullock MR, Broaddus WC, Fillmore HL. Isolation of neuronal progenitor cells from the adult human neocortex. Acta Neurochir. 2006;148(7):773–7. https://doi.org/10.1007/s00701-006-0778-5.

    Article  CAS  PubMed  Google Scholar 

  103. Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, Kocsis JD. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol. 2001;167(1):27–39. https://doi.org/10.1006/exnr.2000.7539.

    Article  CAS  PubMed  Google Scholar 

  104. Olstorn H, Moe MC, Roste GK, Bueters T, Langmoen IA. Transplantation of stem cells from the adult human brain to the adult rat brain. Neurosurgery. 2007;60(6):1089–98. https://doi.org/10.1227/01.NEU.0000255461.91892.0D.

    Article  PubMed  Google Scholar 

  105. Dunkerson J, Moritz KE, Young J, Pionk T, Fink K, Rossignol J, et al. Combining enriched environment and induced pluripotent stem cell therapy results in improved cognitive and motor function following traumatic brain injury. Restor Neurol Neurosci. 2014;32(5):675–87. https://doi.org/10.3233/RNN-140408.

    PubMed  Google Scholar 

  106. Tang H, Sha H, Sun H, Wu X, Xie L, Wang P, et al. Tracking induced pluripotent stem cells-derived neural stem cells in the central nervous system of rats and monkeys. Cell Reprogram. 2013;15(5):435–42. https://doi.org/10.1089/cell.2012.0081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen Z, Tortella FC, Dave JR, Marshall VS, Clarke DL, Sing G, et al. Human amnion-derived multipotent progenitor cell treatment alleviates traumatic brain injury-induced axonal degeneration. J Neurotrauma. 2009;26(11):1987–97. https://doi.org/10.1089/neu.2008.0863.

    Article  PubMed  Google Scholar 

  108. Yan ZJ, Zhang P, Hu YQ, Zhang HT, Hong SQ, Zhou HL, et al. Neural stem-like cells derived from human amnion tissue are effective in treating traumatic brain injury in rat. Neurochem Res. 2013;38(5):1022–33. https://doi.org/10.1007/s11064-013-1012-5.

    Article  CAS  PubMed  Google Scholar 

  109. Nichols JE, Niles JA, DeWitt D, Prough D, Parsley M, Vega S, et al. Neurogenic and neuro-protective potential of a novel subpopulation of peripheral blood-derived CD133+ ABCG2+CXCR4+ mesenchymal stem cells: development of autologous cell-based therapeutics for traumatic brain injury. Stem Cell Res Ther. 2013;4(1):3. https://doi.org/10.1186/scrt151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. • Tajiri N, Acosta SA, Shahaduzzaman M, Ishikawa H, Shinozuka K, Pabon M, et al. Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. J Neurosci. 2014;34(1):313–26. https://doi.org/10.1523/JNEUROSCI.2425-13.2014. This paper studied cell transplantation of mesenchymal stem cells derived from adipose tissue as a cell source for TBI. It is reported that the injured animals showed improved functional recovery and this improvement is largely due to the soluble factors produced by the adipose-derived stem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lu D, Mahmood A, Wang L, Li Y, Lu M, Chopp M. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport. 2001;12(3):559–63. https://doi.org/10.1097/00001756-200103050-00025.

    Article  CAS  PubMed  Google Scholar 

  112. Mahmood A, Lu D, Yi L, Chen JL, Chopp M. Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. J Neurosurg. 2001;94(4):589–95. https://doi.org/10.3171/jns.2001.94.4.0589.

    Article  CAS  PubMed  Google Scholar 

  113. Bonilla C, Zurita M, Otero L, Aguayo C, Vaquero J. Delayed intralesional transplantation of bone marrow stromal cells increases endogenous neurogenesis and promotes functional recovery after severe traumatic brain injury. Brain Inj. 2009;23(9):760–9. https://doi.org/10.1080/02699050903133970.

    Article  PubMed  Google Scholar 

  114. Li Y, Chopp M. Marrow stromal cell transplantation in stroke and traumatic brain injury. Neurosci Lett. 2009;456(3):120–3. https://doi.org/10.1016/j.neulet.2008.03.096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, et al. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation. 2013;10(1):106.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Mahmood A, Lu D, Lu M, Chopp M. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery. 2003;53(3):697–702. https://doi.org/10.1227/01.NEU.0000079333.61863.AA.

    Article  PubMed  Google Scholar 

  117. Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, Ali M, Mahmood A, Xiong Y. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int. 2016.

  118. Kolacna L, Bakesova J, Varga F, Kostakova E, Planka L, Necas A, et al. Biochemical and biophysical aspects of collagen nanostructure in the extracellular matrix. Physiol Res. 2007;56(Suppl 1):S51–60.

    CAS  PubMed  Google Scholar 

  119. Tate MC, Shear DA, Hoffman SW, Stein DG, Archer DR, LaPlaca MC. Fibronectin promotes survival and migration of primary neural stem cells transplanted into the traumatically injured mouse brain. Cell Transplant. 2002;11(3):283–95.

    PubMed  Google Scholar 

  120. Guan J, Zhu Z, Zhao RC, Xiao Z, Wu C, Han Q, et al. Transplantation of human mesenchymal stem cells loaded on collagen scaffolds for the treatment of traumatic brain injury in rats. Biomaterials. 2013;34(24):5937–46. https://doi.org/10.1016/j.biomaterials.2013.04.047.

    Article  CAS  PubMed  Google Scholar 

  121. Mahmood A, Wu H, Qu C, Xiong Y, Chopp M. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord. J Neurosurg. 2013;118(2):381–9. https://doi.org/10.3171/2012.11.JNS12753.

    Article  CAS  PubMed  Google Scholar 

  122. Medberry CJ, Crapo PM, Siu BF, Carruthers CA, Wolf MT, Nagarkar SP, et al. Hydrogels derived from central nervous system extracellular matrix. Biomaterials. 2013;34(4):1033–40. https://doi.org/10.1016/j.biomaterials.2012.10.062.

    Article  CAS  PubMed  Google Scholar 

  123. Crapo PM, Tottey S, Slivka PF, Badylak SF. Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering. Tissue Eng A. 2014;20(1–2):313–23. https://doi.org/10.1089/ten.tea.2013.0186.

    Article  CAS  Google Scholar 

  124. Heinrich C, Blum R, Gascon S, Masserdotti G, Tripathi P, Sanchez R, et al. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol. 2010;8(5):e1000373. https://doi.org/10.1371/journal.pbio.1000373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Torper O, Pfisterer U, Wolf DA, Pereira M, Lau S, Jakobsson J, et al. Generation of induced neurons via direct conversion in vivo. Proc Natl Acad Sci U S A. 2013;110(17):7038–43. https://doi.org/10.1073/pnas.1303829110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Niu W, Zang T, Zou Y, Fang S, Smith DK, Bachoo R, et al. In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol. 2013;15(10):1164–75. https://doi.org/10.1038/ncb2843.

    Article  CAS  PubMed  Google Scholar 

  127. • Niu W, Zang T, Smith DK, Vue TY, Zou Y, Bachoo R, et al. SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Rep. 2015;4(5):780–94. https://doi.org/10.1016/j.stemcr.2015.03.006. Based on previous success of in vivo reprogramming of astrocytes into neural stem/progenitor cells with several repogramming transcription factors, this paper reported further optimization of in vivo conversion of astrocytes into neural stem/progenitor cells with a key transcription factor SOX2.

    Article  CAS  Google Scholar 

  128. Magnusson JP, Goritz C, Tatarishvili J, Dias DO, Smith EM, Lindvall O, et al. A latent neurogenic program in astrocytes regulated by notch signaling in the mouse. Science. 2014;346(6206):237–41. https://doi.org/10.1126/science.346.6206.237.

    Article  CAS  PubMed  Google Scholar 

  129. •• Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer's disease model. Cell Stem Cell. 2014;14(2):188–202. https://doi.org/10.1016/j.stem.2013.12.001. This paper reported direct conversion of reactive astrocytes in the cortex into functional neurons with a single neural transcription factor, NeuroD1, in a stab-injured model and an Alzheimer's disease model.

    Article  CAS  PubMed  Google Scholar 

  130. •• Gao X, Wang X, Xiong W, Chen J. In vivo reprogramming reactive glia into iPSCs to produce new neurons in the cortex following traumatic brain injury. Sci Rep. 2016;6(1):22490. This paper reported successful conversion of reactive astrocytes in glial scar in the cortex in a TBI model into functional neurons. https://doi.org/10.1038/srep22490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH, grant numbers: NS101955-01 and NS093985-01; to D.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Sun.

Ethics declarations

Conflict of Interest

Nicole M. Weston and Dong Sun declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neurotrauma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weston, N.M., Sun, D. The Potential of Stem Cells in Treatment of Traumatic Brain Injury. Curr Neurol Neurosci Rep 18, 1 (2018). https://doi.org/10.1007/s11910-018-0812-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-018-0812-z

Keywords

Navigation