Skip to main content

Advertisement

Log in

Pathophysiology and Treatment of Memory Dysfunction After Traumatic Brain Injury

  • Neurotrauma (M Kumar, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Memory is fundamental to everyday life, and cognitive impairments resulting from traumatic brain injury (TBI) have devastating effects on TBI survivors. A contributing component to memory impairments caused by TBI is alteration in the neural circuits associated with memory function. In this review, we aim to bring together experimental findings that characterize behavioral memory deficits and the underlying pathophysiology of memory-involved circuits after TBI. While there is little doubt that TBI causes memory and cognitive dysfunction, it is difficult to conclude which memory phase, i.e., encoding, maintenance, or retrieval, is specifically altered by TBI. This is most likely due to variation in behavioral protocols and experimental models. Additionally, we review a selection of experimental treatments that hold translational potential to mitigate memory dysfunction following injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Centers for Disease Control and Prevention. Report to Congress on traumatic brain injury in the United States: epidemiology and rehabilitation. Atlanta, GA; 2015.

  2. Nicholl J, LaFrance WC. Neuropsychiatric sequelae of traumatic brain injury. Semin. Neurol. 2009. p. 247–55.

  3. Pierce JES, Smith DH, Trojanowski JQ, McIntosh TK. Enduring cognitive, neurobehavioral and histopathological changes persist for up to one year following severe experimental brain injury in rats. Neuroscience. 1998;87:359–69.

    Article  CAS  PubMed  Google Scholar 

  4. Rutland-Brown W, Langlois JA, Thomas KE, Xi YL. Incidence of traumatic brain injury in the United States, 2003. J Head Trauma Rehabil. 2006;21:544–8.

    Article  PubMed  Google Scholar 

  5. Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology. 1989;15:49–59.

    Article  CAS  PubMed  Google Scholar 

  6. Graham DI, Adams JH, Nicoll JAR, Maxwell WL, Gennarelli TA. The nature, distribution and causes of traumatic brain injury. Brain Pathol. 1995;5:397–406.

    Article  CAS  PubMed  Google Scholar 

  7. McAllister TW, Sparling MB, Flashman LA, Guerin SJ, Mamourian AC, Saykin AJ. Differential working memory load effects after mild traumatic brain injury. NeuroImage. 2001;14:1004–12.

    Article  CAS  PubMed  Google Scholar 

  8. Marmarou CR, Prieto R, Taya K, Young HF, Marmarou A. Marmarou weight drop injury model. Anim. Model. Acute Neurol. Inj. 2009. p. 393–407.

  9. Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG. Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res. 1981;211:67–77.

    Article  CAS  PubMed  Google Scholar 

  10. Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E. Mouse closed head injury model induced by a weight-drop device. Nat Protoc. 2009;4:1328–37.

    Article  CAS  PubMed  Google Scholar 

  11. Shapira Y, Setton D, Artru AA, Shohami E. Blood-brain barrier permeability, cerebral edema, and neurologic function after closed head injury in rats. Anesth Analg. 1993;77:141–8.

    CAS  PubMed  Google Scholar 

  12. Panzer MB, Matthews KA, Yu AW, Morrison B, Meaney DF, Bass CR. A multiscale approach to blast neurotrauma modeling: part I—development of novel test devices for in vivo and in vitro blast injury models. Front. Neurol. 2012;MAR.

  13. Beamer M, Tummala SR, Gullotti D, Kopil K, Gorka S, Abel T, et al. Primary blast injury causes cognitive impairments and hippocampal circuit alterations. Exp Neurol. 2016;283:16–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, et al. A fluid percussion model of experimental brain injury in the rat. J Neurosurg. 1987;67:110–9.

    Article  CAS  PubMed  Google Scholar 

  15. Edward Dixon C, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods. 1991;39:253–62.

    Article  Google Scholar 

  16. Cortez SC, McIntosh TK, Noble LJ. Experimental fluid percussion brain injury: vascular disruption and neuronal and glial alterations. Brain Res. 1989;482:271–82.

    Article  CAS  PubMed  Google Scholar 

  17. McIntosh TK, Vink R, Noble L, Yamakami I, Fernyak S, Soares H, et al. Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience. 1989;28:233–44.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson VE, Meaney DF, Cullen DK, Smith DH. Animal models of traumatic brain injury. Handb Clin Neurol. 2015;127:115–28.

    Article  PubMed  PubMed Central  Google Scholar 

  19. • Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14:128–42. Xiong et al. extensively reviews the current animal models of traumatic brain injury. It is particularly useful to gain insight into the various aspects of experimental models used to study traumatic brain injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Namjoshi DR, Good C, Cheng WH, Panenka W, Richards D, Cripton PA, et al. Towards clinical management of traumatic brain injury: a review of models and mechanisms from a biomechanical perspective. Dis Model Mech. 2013;0:1–14.

    Google Scholar 

  21. Tulving E. How many memory systems are there? Am Psychol. 1985;40:385–98.

    Article  Google Scholar 

  22. Josselyn SA, Köhler S, Frankland PW. Finding the engram. Nat Rev Neurosci. 2015;16:521–34.

    Article  CAS  PubMed  Google Scholar 

  23. Tonegawa S, Pignatelli M, Roy DS, Ryan TJ. Memory engram storage and retrieval. Curr. Opin. Neurobiol. 2015. p. 101–9.

  24. Cowan N. What are the differences between long-term, short-term, and working memory? Nelson NIH Public Access. 2009;6123:323–38.

    Google Scholar 

  25. Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135–68.

    Article  PubMed  Google Scholar 

  26. Tulving E, Markowitsch HJ. Episodic and declarative memory: role of the hippocampus. Hippocampus. 1998;8:198–204.

    Article  CAS  PubMed  Google Scholar 

  27. Tulving E. Episodic and semantic memory. Organ. Mem. 1972. p. 381–403.

  28. Pause BM, Zlomuzica A, Kinugawa K, Mariani J, Pietrowsky R, Dere E. Perspectives on episodic-like and episodic memory. Front Behav Neurosci. 2013;7:33.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Alvarez P, Squire LR. Memory consolidation and the medial temporal lobe: a simple network model. Proc Natl Acad Sci U S A. 1994;91:7041–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Olton DS, Papas BC. Spatial memory and hippocampal function. Neuropsychologia. 1979;17:669–82.

    Article  CAS  PubMed  Google Scholar 

  31. Olton DS, Collison C, Werz MA. Spatial memory and radial arm maze performance of rats. Learn Motiv. 1977;8:289–314.

    Article  Google Scholar 

  32. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1:848–58.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hoskison MM, Moore AN, Hu B, Orsi S, Kobori N, Dash PK. Persistent working memory dysfunction following traumatic brain injury: evidence for a time-dependent mechanism. Neuroscience IBRO. 2009;159:483–91.

    Article  CAS  Google Scholar 

  34. Kobori N, Dash PK. Reversal of brain injury-induced prefrontal glutamic acid decarboxylase expression and working memory deficits by D 1 receptor antagonism. J Neurosci. 2006;26:4236–46.

    Article  CAS  PubMed  Google Scholar 

  35. Sebastian V, Diallo A, Ling DSF, Serrano PA. Robust training attenuates TBI-induced deficits in reference and working memory on the radial 8-arm maze. Front Behav Neurosci. 2013;7:38.

    Article  PubMed  PubMed Central  Google Scholar 

  36. • Smith CJ, Xiong G, Elkind JA, Putnam B, Cohen AS. Brain injury impairs working memory and prefrontal circuit function. Front Neurol. 2015;6:1–13. Smith et al. demonstrate a working memory impairment caused by TBI and associated with circuit alteration in the medial prefrontal cortex. This is a good example of relating memory deficits to the underlying pathophysiology in the working memory circuit.

    Article  CAS  Google Scholar 

  37. Lyeth BG, Jenkins LW, Hamm RJ, Dixon CE, Phillips LL, Clifton GL, et al. Prolonged memory impairment in the absence of hippocampal cell-death following traumatic brain injury in the rat. Brain Res. 1990;526:249–58.

    Article  CAS  PubMed  Google Scholar 

  38. Whiting MD, Hamm RJ. Traumatic brain injury produces delay-dependent memory impairment in rats. J Neurotrauma. 2006;23:1529–34.

    Article  PubMed  Google Scholar 

  39. Eakin K, Miller JP. Mild traumatic brain injury is associated with impaired hippocampal spatiotemporal representation in the absence of histological changes. J Neurotrauma Atlanta, GA: Elsevier Inc. 2012;29:1180–7.

    Article  Google Scholar 

  40. Sweet JA, Eakin KC, Munyon CN, Miller JP. Improved learning and memory with theta-burst stimulation of the fornix in rat model of traumatic brain injury. Hippocampus. 2014;24:1592–600.

    Article  PubMed  Google Scholar 

  41. Brandeis R, Brandys Y, Yehuda S. The use of the Morris water maze in the study of memory and learning. Int J Neurosci. 1989;48:29–69.

    Article  CAS  PubMed  Google Scholar 

  42. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11:47–60.

    Article  CAS  PubMed  Google Scholar 

  43. Barnes CA. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol. 1979;93:74–104.

    Article  CAS  PubMed  Google Scholar 

  44. Olton DS. The radial arm maze as a tool in behavioral pharmacology. Physiol Behav. 1987;40:793–7.

    Article  CAS  PubMed  Google Scholar 

  45. Fox GB, Fan L, LeVasseur RA, Faden AI. Effect of traumatic brain injury on mouse spatial and nonspatial learning in the Barnes circular maze. J Neurotrauma. 1998;15:1037–46.

    Article  CAS  PubMed  Google Scholar 

  46. Dawish H, Mahmood A, Schallert T, Chopp M, Therrien B. Mild traumatic brain injury (MTBI) leads to spatial learning deficits. Brain Inj. 2012;26:151–65.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hamm RJ. Cognitive deficits following traumatic brain injury produced by controlled cortical impact. J Neurotrauma. 1992;9:11–20.

    Article  CAS  PubMed  Google Scholar 

  48. Kim D-K, Nishida H, An SY, Shetty AK, Bartosh TJ, Prockop DJ. Chromatographically isolated CD63 + CD81 + extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci. 2016;113:170–5.

    Article  CAS  PubMed  Google Scholar 

  49. Dash PK, Moore AN, Dixon CE. Spatial memory deficits, increased phosphorylation of the transcription factor Creb, and induction of the Ap-1 complex following experimental brain injury. J Neurosci. 1995;15:2030–9.

    CAS  PubMed  Google Scholar 

  50. Zohar O, Rubovitch V, Milman A, Schreiber S, Pick CG. Behavioral consequences of minimal traumatic brain injury in mice. Acta Neurobiol Exp (Wars). 2011;71:36–45.

    Google Scholar 

  51. Hylin MJ, Orsi SA, Zhao J, Bockhorst K, Perez A, Moore AN, et al. Behavioral and histopathological alterations resulting from mild fluid percussion injury. J Neurotrauma. 2013;30:702–15.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pierce JES, Smith DH, Eison MS, McIntosh TK. The nootropic compound BMY-21502 improves spatial learning ability in brain injured rats. Brain Res. 1993;624:199–208.

    Article  CAS  PubMed  Google Scholar 

  53. Lee DJ, Gurkoff GG, Izadi A, Berman RF, Ekstrom AD, Muizelaar JP, et al. Medial septal nucleus theta frequency deep brain stimulation improves spatial working memory after traumatic brain injury. J Neurotrauma. 2013;30:131–9.

    Article  PubMed  Google Scholar 

  54. Fedor M, Berman RF, Muizelaar JP, Lyeth BG. Hippocampal θ dysfunction after lateral fluid percussion injury. J Neurotrauma. 2010;27:1605–15.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Whiting MD, Hamm RJ. Mechanisms of anterograde and retrograde memory impairment following experimental traumatic brain injury. Brain Res. 2008;1213:69–77.

    Article  CAS  PubMed  Google Scholar 

  56. Smith DH, Lowenstein DH, Gennarelli TA, Mcintosh K. Persistent memory dysfunction is associated with bilateral hippocampal damage following experimental brain injury. Neurosci Lett. 1994;168:151–4.

  57. Hicks RR, Smith DH, Lowenstein DH, Saint Marie R, McIntosh TK. Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus. J Neurotrauma. 1993;10:405–14.

    Article  CAS  PubMed  Google Scholar 

  58. Okiyama K, Smith DH, Thomas MJ, McIntosh TK. Evaluation of a novel calcium-channel blocker, (S)-emopamil, on regional cerebral edema and neurobehavioral function after experimental brain injury. J Neurosurg. 1992;77:607–15.

    Article  CAS  PubMed  Google Scholar 

  59. Smith DH, Okiyama K, Thomas MJ, Claussen B, McIntosh TK. Evaluation of memory dysfunction following experimental brain injury using the Morris water maze. J Neurotrauma. 1991;8:259–69.

    Article  CAS  PubMed  Google Scholar 

  60. • Gurkoff GG, Gahan JD, Ghiasvand RT, Hunsaker MR, Van K, Feng J-F, et al. Evaluation of metric, topological, and temporal ordering memory tasks after lateral fluid percussion injury. J Neurotrauma. 2013;30:292–300. Gurkoff et al. tested various tasks to examine how TBI alters recognition memory. They found that the temporal aspect of episodic memory is impaired.

    Article  PubMed  Google Scholar 

  61. Zhang Y, Chopp M, Meng Y, Zhang ZG. Cerebrolysin improves cognitive performance in rats after mild traumatic brain injury. J Neurosurg. 2015;122:843–55.

    Article  CAS  PubMed  Google Scholar 

  62. Tulving E. Episodic memory: from mind to brain. Annu Rev Psychol. 2002;53:1–25.

    Article  PubMed  Google Scholar 

  63. Serruya MD, Sederberg PB, Kahana MJ. Power shifts track serial position and modulate encoding in human episodic memory. Cereb Cortex. 2014;24:403–13.

    Article  PubMed  Google Scholar 

  64. Oliveira AMM, Hawk JD, Abel T, Havekes R. Post-training reversible inactivation of the hippocampus enhances novel object recognition memory. Learn Mem. 2010;17:155–60.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Carbonell WS, Grady MS. Regional and temporal characterization of neuronal, glial, and axonal response after traumatic brain injury in the mouse. Acta Neuropathol. 1999;98:396–406.

    Article  CAS  PubMed  Google Scholar 

  66. Amaral DG, Rempel-Clower NL, Zola SM, Squire LR. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J Neurosci. 1996;16:5233–55.

    PubMed  Google Scholar 

  67. Reed JM, Squire LR. Impaired recognition memory in patients with lesions limited to the hippocampal formation. Behav Neurosci. 1997;111:667–75.

    Article  CAS  PubMed  Google Scholar 

  68. Cave CB, Squire LR. Equivalent impairment of spatial and nonspatial memory following damage to the human hippocampus. Hippocampus. 1991;1:329–40.

    Article  CAS  PubMed  Google Scholar 

  69. Bohbot VD, Allen JJB, Nadel L. Memory deficits characterized by patterns of lesions to the hippocampus and parahippocampal cortex. Ann N Y Acad Sci. 2000;911:355–68.

    Article  CAS  PubMed  Google Scholar 

  70. Miller LA, Lai R, Munoz DG. Contributions of the entorhinal cortex, amygdala and hippocampus to human memory. Neuropsychologia. 1998;36:1247–56.

    Article  CAS  PubMed  Google Scholar 

  71. Deweer B, Pillon B, Pochon JB, Dubois B. Is the HM story only a “remote memory”? Some facts about hippocampus and memory in humans. Behav. Brain Res. 2001. p. 209–24.

  72. Marr D. Simple memory: a theory for archicortex. Source Philos. Trans. R. Soc. London. Ser. B, Biol. Sci. 1971;262:23–81.

    CAS  Google Scholar 

  73. McNaughton BL, Morris RGM. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 1987. p. 408–15.

  74. O’Reilly RC, McClelland JL. Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus. 1994;4:661–82.

    Article  PubMed  Google Scholar 

  75. Treves A, Rolls ET. Computational analysis of the role of the hippocampus in memory. Hippocampus. 1994;4:374–91.

    Article  CAS  PubMed  Google Scholar 

  76. Leutgeb JK, Leutgeb S, Moser M-B, Moser EI. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science (80- ). 2007;315:961–6.

    Article  CAS  Google Scholar 

  77. Bakker A, Kirwan CB, Miller M, Stark CEL. Pattern separation in the human hippocampal CA3 and dentate gyrus. Science. 2008;319:1640–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hsu D. The dentate gyrus as a filter or gate: a look back and a look ahead. Prog. Brain Res. 2007. p. 601–13.

  79. Buzsáki G, Lai-Wo SL, Vanderwolf CH. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. Rev. 1983. p. 139–71.

  80. Halasy K, Somogyi P. Subdivisions in the multiple GABAergic innervation of granule cells in the dentate gyrus of the rat hippocampus. Eur J Neurosci. 1993;5:411–29.

    Article  CAS  PubMed  Google Scholar 

  81. Han Z-S, Buhl EH, Lorinczi Z, Somogyi P. A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippocampus. Eur J Neurosci. 1993;5:395–410.

    Article  CAS  PubMed  Google Scholar 

  82. Soltesz I, Smetters DK, Mody I. Tonic inhibition originates from synapses close to the soma. Neuron. 1995;14:1273–83.

    Article  CAS  PubMed  Google Scholar 

  83. Hollrigel GS, Toth K, Soltesz I. Neuroprotection by propofol in acute mechanical injury: role of GABAergic inhibition. J Neurophysiol. 1996;76:2412–22.

    CAS  PubMed  Google Scholar 

  84. Witgen BM, Lifshitz J, Smith ML, Schwarzbach E, Liang SL, Grady MS, et al. Regional hippocampal alteration associated with cognitive deficit following experimental brain injury: a systems, network and cellular evaluation. Neuroscience. 2005;133:1–15.

    Article  CAS  PubMed  Google Scholar 

  85. Toth Z, Hollrigel GS, Gorcs T, Soltesz I. Instantaneous perturbation of dentate interneuronal networks by a pressure wave-transient delivered to the neocortex. J Neurosci. 1997;17:8106–17.

    CAS  PubMed  Google Scholar 

  86. Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK. Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci. 1992;12:4846–53.

    CAS  PubMed  Google Scholar 

  87. Santhakumar V, Bender R, Frotscher M, Ross ST, Hollrigel GS, Toth Z, et al. Granule cell hyperexcitability in the early post-traumatic rat dentate gyrus: the “irritable mossy cell” hypothesis. J Physiol. 2000;524(Pt 1):117–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Santhakumar V, Ratzliff ADH, Jeng J, Toth Z, Soltesz I. Long-term hyperexcitability in the hippocampus after experimental head trauma. Ann Neurol. 2001;50:708–17.

    Article  CAS  PubMed  Google Scholar 

  89. Hunt RF, Scheff SW, Smith BN. Synaptic reorganization of inhibitory hilar interneuron circuitry after traumatic brain injury in mice. J Neurosci. 2011;31:6880–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bonislawski DP, Schwarzbach EP, Cohen AS. Brain injury impairs dentate gyrus inhibitory efficacy. Neurobiol Dis. 2007;25:163–9.

    Article  CAS  PubMed  Google Scholar 

  91. Mtchedlishvili Z, Lepsveridze E, Xu H, Kharlamov EA, Lu B, Kelly KM. Increase of GABAA receptor-mediated tonic inhibition in dentate granule cells after traumatic brain injury. Neurobiol Dis Elsevier Inc. 2010;38:464–75.

    Article  CAS  Google Scholar 

  92. Boychuk JA, Butler CR, Halmos KC, Smith BN. Enduring changes in tonic GABAA receptor signaling in dentate granule cells after controlled cortical impact brain injury in mice. Exp Neurol Elsevier BV. 2016;277:178–89.

    Article  CAS  Google Scholar 

  93. Pavlov I, Huusko N, Drexel M, Kirchmair E, Sperk G, Pitkänen A, et al. Progressive loss of phasic, but not tonic, GABAA receptor-mediated inhibition in dentate granule cells in a model of post-traumatic epilepsy in rats. Neuroscience Elsevier Inc. 2011;194:208–19.

    CAS  Google Scholar 

  94. Langlois JA, Rutland-Brown W, Wald MM, Li N, Yang Y, Glover DP, et al. Decrease in tonic inhibition contributes to increase in dentate semilunar granule cell excitability after brain injury. J. Neurotrauma. Atlanta, GA: Elsevier Inc. 2015;32:1–13.

    Article  Google Scholar 

  95. Gupta A, Elgammal FS, Proddutur A, Shah S, Santhakumar V. Decrease in tonic inhibition contributes to increase in dentate semilunar granule cell excitability after brain injury. J Neurosci. 2012;32:2523–37.

    Article  CAS  PubMed  Google Scholar 

  96. Howard AL, Neu A, Morgan RJ, Echegoyen JC, Soltesz I. Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. J Neurophysiol. 2007;97:2394–409.

    Article  CAS  PubMed  Google Scholar 

  97. Hasselmo ME, Schnell E, Barkai E. Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J Neurosci. 1995;15:5249–62.

    CAS  PubMed  Google Scholar 

  98. Chen Y, Constantini S, Trembovler V, Weinstock M, Shohami E. An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. J Neurotrauma. 1996;13:557–68.

    Article  CAS  PubMed  Google Scholar 

  99. Tang YP, Noda Y, Hasegawa T, Nabeshima T. A concussive-like brain injury model in mice (I): impairment in learning and memory. J Neurotrauma. 1997;14:851–62.

    Article  CAS  PubMed  Google Scholar 

  100. Golarai G, Greenwood AC, Feeney DM, Connor JA. Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J. Neurosci. 2001;21:8523–37.

    CAS  Google Scholar 

  101. Baldwin SA, Gibson T, Callihan CT, Sullivan PG, Palmer E, Scheff SW. Neuronal cell loss in the CA3 subfield of the hippocampus following cortical contusion utilizing the optical disector method for cell counting. J Neurotrauma. 1997;14:385–98.

    Article  CAS  PubMed  Google Scholar 

  102. Griesemer D, Mautes AM. Closed head injury causes hyperexcitability in rat hippocampal CA1 but not in CA3 pyramidal cells. J Neurotrauma. 2007;24:1823–32.

    Article  PubMed  Google Scholar 

  103. Ting JT, Daigle TL, Chen Q, Feng G. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol Biol. 2014;1183:221–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Lee I, Kesner RP. Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus. 2004;14:301–10.

    Article  PubMed  Google Scholar 

  105. Lee I, Rao G, Knierim JJ. A double dissociation between hippocampal subfields: differential time course of CA3 and CA1 place cells for processing changed environments. Neuron. 2004;42:803–15.

    Article  CAS  PubMed  Google Scholar 

  106. Leutgeb S, Leutgeb JK, Barnes CA, Moser EI, McNaughton BL, Moser M-B. Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science. 2005;309:619–23.

    Article  CAS  PubMed  Google Scholar 

  107. Leutgeb S, Leutgeb JK, Moser MB, Moser EI. Place cells, spatial maps and the population code for memory. Curr. Opin. Neurobiol. 2005. p. 738–46.

  108. D’Ambrosio R, Maris DO, Grady MS, Winn HR, Janigro D. Selective loss of hippocampal long-term potentiation, but not depression, following fluid percussion injury. Brain Res. 1998;786:64–79.

    Article  PubMed  Google Scholar 

  109. Norris CM, Scheff SW. Recovery of afferent function and synaptic strength in hippocampal CA1 following traumatic brain injury. J Neurotrauma. 2009;26:2269–78.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Schwarzbach E, Bonislawski DP, Xiong G, Cohen AS. Mechanisms underlying the inability to induce area CA1 LTP in the mouse after traumatic brain injury. Hippocampus. 2006;16:541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Johnson BN, Palmer CP, Bourgeois EB, Elkind JA, Putnam BJ, Cohen AS. Augmented inhibition from cannabinoid-sensitive interneurons diminishes CA1 output after traumatic brain injury. Front Cell Neurosci. 2014;8:435.

    PubMed  PubMed Central  Google Scholar 

  112. Reeves TM, Lyeth BG, Phillips LL, Hamm RJ, Povlishock JT. The effects of traumatic brain injury on inhibition in the hippocampus and dentate gyrus. Brain Res. 1997;757:119–32.

    Article  CAS  PubMed  Google Scholar 

  113. Reeves TM, Kao CQ, Phillips LL, Bullock MR, Povlishock JT. Presynaptic excitability changes following traumatic brain injury in the rat. J Neurosci Res. 2000;60:370–9.

    Article  CAS  PubMed  Google Scholar 

  114. Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, et al. GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury. Exp. Neurol. Elsevier B.V. 2015;273:11–23.

    Article  CAS  Google Scholar 

  115. Eakin K, Miller JP. Mild traumatic brain injury is associated with impaired hippocampal spatiotemporal representation in the absence of histological changes. J Neurotrauma. 2012;29:1180–7.

    Article  PubMed  Google Scholar 

  116. Paterno R, Metheny H, Xiong G, Elkind J, Cohen AS. Mild traumatic brain injury decreases broadband power in area CA1. J Neurotrauma. 2016;5:neu.2015.4107.

    Google Scholar 

  117. Yang L, Benardo LS, Valsamis H, Ling DSF. Acute injury to superficial cortex leads to a decrease in synaptic inhibition and increase in excitation in neocortical layer V pyramidal cells. J Neurophysiol. 2007;97:178–87.

    Article  CAS  PubMed  Google Scholar 

  118. Greer JE, Povlishock JT, Jacobs KM. Electrophysiological abnormalities in both axotomized and nonaxotomized pyramidal neurons following mild traumatic brain injury. J Neurosci. 2012;32:6682–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Goforth PB, Ellis EF, Satin LS. Enhancement of AMPA-mediated current after traumatic injury in cortical neurons. J Neurosci. 1999;19:7367–74.

    CAS  PubMed  Google Scholar 

  120. Goforth PB, Ren J, Schwartz BS, Satin LS, Ashman T, Gordon W, et al. Excitatory synaptic transmission and network activity are depressed following mechanical injury in cortical neurons. J Neurophysiol. 2011;105:2350–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kao C-Q, Goforth PB, Ellis EF, Satin LS. Potentiation of GABA(A) currents after mechanical injury of cortical neurons. J Neurotrauma. 2004;21:259–70.

    Article  PubMed  Google Scholar 

  122. Chakraborty S, Skolnick B, Narayan RK. Neuroprotection trials in traumatic brain injury. Curr. Neurol. Neurosci. Rep. 2016. p. 29.

  123. de Hemptinne C, Swann NC, Ostrem JL, Ryapolova-Webb ES, San Luciano M, Galifianakis NB, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci. 2015;18:779–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Lee DJ, Gurkoff GG, Izadi A, Seidl SE, Echeverri A, Melnik M, et al. Septohippocampal neuromodulation improves cognition after traumatic brain injury. J Neurotrauma. 2015;11:150902125930001.

    Google Scholar 

  125. Carballosa Gonzalez MM, Blaya MO, Alonso OF, Bramlett HM, Hentall ID. Midbrain raphe stimulation improves behavioral and anatomical recovery from fluid-percussion brain injury. J Neurotrauma. 2013;30:119–30.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Kang E-K, Kim D-Y, Paik N-J. Transcranial direct current stimulation of the left prefrontal cortex improves attention in patients with traumatic brain injury: a pilot study. J Rehabil Med. 2012;44:346–50.

    Article  PubMed  Google Scholar 

  127. Rezai AR, Sederberg PB, Bogner J, Nielson DM, Zhang J, Mysiw WJ, et al. Improved function after deep brain stimulation for chronic, severe traumatic brain injury. Neurosurgery. 2016;79:204–10.

    Article  PubMed  Google Scholar 

  128. Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. 2007;448:600–3.

    Article  CAS  PubMed  Google Scholar 

  129. Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, et al. Medial septal nucleus theta frequency deep brain stimulation improves spatial working memory after traumatic brain injury. J Neurotrauma. 2013;30:119–30.

    Article  Google Scholar 

  130. Shin SS, Dixon CE, Okonkwo DO, Richardson RM. Neurostimulation for traumatic brain injury. J Neurosurg. 2014;121:1219–31.

    Article  PubMed  Google Scholar 

  131. Gao J, Prough DS, McAdoo DJ, Grady JJ, Parsley MO, Ma L, et al. Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury. Exp Neurol. 2006;201:281–92.

    Article  CAS  PubMed  Google Scholar 

  132. Shear DA, Tate MC, Archer DR, Hoffman SW, Hulce VD, Laplaca MC, et al. Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res. 2004;1026:11–22.

    Article  CAS  PubMed  Google Scholar 

  133. Bakshi A, Shimizu S, Keck CA, Cho S, LeBold DG, Morales D, et al. Neural progenitor cells engineered to secrete GDNF show enhanced survival, neuronal differentiation and improve cognitive function following traumatic brain injury. Eur J Neurosci. 2006;23:2119–34.

    Article  PubMed  Google Scholar 

  134. Riess P, Molcanyi M, Bentz K, Maegele M, Simanski C, Carlitscheck C, et al. Embryonic stem cell transplantation after experimental traumatic brain injury dramatically improves neurological outcome, but may cause tumors. J Neurotrauma. 2007;24:216–25.

    Article  PubMed  Google Scholar 

  135. Sun D, Gugliotta M, Rolfe A, Reid W, McQuiston AR, Hu W, et al. Sustained survival and maturation of adult neural stem/progenitor cells after transplantation into the injured brain. J Neurotrauma. 2011;28:961–72.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Olstorn H, Moe MC, Røste GK, Bueters T, Langmoen IA. Transplantation of stem cells from the adult human brain to the adult rat brain. Neurosurgery. 2007;60:1089–98.

    Article  PubMed  Google Scholar 

  137. Lu D, Mahmood A, Qu C, Hong X, Kaplan D, Chopp M. Collagen scaffolds populated with human marrow stromal cells reduce lesion volume and improve functional outcome after traumatic brain injury. Neurosurgery. 2007;61:596–602.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Xiong Y, Qu C, Mahmood A, Liu Z, Ning R, Li Y, et al. Delayed transplantation of human marrow stromal cell-seeded scaffolds increases transcallosal neural fiber length, angiogenesis, and hippocampal neuronal survival and improves functional outcome after traumatic brain injury in rats. Brain Res Elsevier BV. 2009;1263:183–91.

    Article  CAS  Google Scholar 

  139. Mathews GC, Diamond JS. Neuronal glutamate uptake contributes to GABA synthesis and inhibitory synaptic strength. J Neurosci. 2003;23:2040–8.

    CAS  PubMed  Google Scholar 

  140. Kanamori K, Ross BD, Kondrat RW. Rate of glutamate synthesis from leucine in rat brain measured in vivo by 15N NMR. J Neurochem. 1998;70:1304–15.

    Article  CAS  PubMed  Google Scholar 

  141. Cole JT, Mitala CM, Kundu S, Verma A, Elkind JA, Nissim I, et al. Dietary branched chain amino acids ameliorate injury-induced cognitive impairment. Proc Natl Acad Sci U S A. 2010;107:366–71.

    Article  CAS  PubMed  Google Scholar 

  142. •• Lim MM, Elkind J, Xiong G, Galante R, Zhu J, Zhang L, et al. Dietary therapy mitigates persistent wake deficits caused by mild traumatic brain injury. Sci Transl Med. 2013;5:215ra173. Lim et al. demonstrate that lateral fluid percussion alters sleep by inducing an inability to maintain wakefulness. Furthermore, they demonstrate that branched chain amino acid dietary therapy restores sleep by increased activity of hypothalamic orexin neurons. The restoration of sleep activity may improve memory consolidation known to occur during sleep.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Bondi CO, Klitsch KC, Leary JB, Kline AE. Environmental enrichment as a viable neurorehabilitation strategy for experimental traumatic brain injury. J Neurotrauma. 2014;31:873–88.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Darwish H, Mahmood A, Schallert T, Chopp M, Therrien B. Simvastatin and environmental enrichment effect on recognition and temporal order memory after mild-to-moderate traumatic brain injury. Brain Inj. 2014;28:1362–01.

    Article  Google Scholar 

  145. Hamm RJ, Temple MD, O’Dell DM, Pike BR, Lyeth BG. Exposure to environmental complexity promotes recovery of cognitive function after traumatic brain injury. J Neurotrauma. 1996;13:41–7.

    Article  CAS  PubMed  Google Scholar 

  146. Hicks RR, Zhang L, Atkinson A, Stevenon M, Veneracion M, Seroogy KB. Environmental enrichment attenuates cognitive deficits, but does not alter neurotrophin gene expression in the hippocampus following lateral fluid percussion brain injury. Neuroscience. 2002;112:631–7.

    Article  CAS  PubMed  Google Scholar 

  147. Passineau MJ, Green EJ, Dietrich WD. Therapeutic effects of environmental enrichment on cognitive function and tissue integrity following severe traumatic brain injury in rats. Exp Neurol. 2001;168:373–84.

    Article  CAS  PubMed  Google Scholar 

  148. Sozda CN, Hoffman AN, Olsen AS, Cheng JP, Zafonte RD, Kline AE. Empirical comparison of typical and atypical environmental enrichment paradigms on functional and histological outcome after experimental traumatic brain injury. J Neurotrauma. 2010;27:1047–57.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hoffman AN, Malena RR, Westergom BP, Luthra P, Cheng JP, Aslam HA, et al. Environmental enrichment-mediated functional improvement after experimental traumatic brain injury is contingent on task-specific neurobehavioral experience. Neurosci Lett. 2008;431:226–30.

    Article  CAS  PubMed  Google Scholar 

  150. Kline AE, Wagner AK, Westergom BP, Malena RR, Zafonte RD, Olsen AS, et al. Acute treatment with the 5-HT1A receptor agonist 8-OH-DPAT and chronic environmental enrichment confer neurobehavioral benefit after experimental brain trauma. Behav Brain Res. 2007;177:186–94.

    Article  CAS  PubMed  Google Scholar 

  151. Matter AM, Folweiler KA, Curatolo LM, Kline AE. Temporal effects of environmental enrichment-mediated functional improvement after experimental traumatic brain injury in rats. Neurorehabil Neural Repair. 2011;25:558–64.

    Article  PubMed  PubMed Central  Google Scholar 

  152. de Witt BW, Ehrenberg KM, McAloon RL, Panos AH, Shaw KE, Raghavan PV, et al. Abbreviated environmental enrichment enhances neurobehavioral recovery comparably to continuous exposure after traumatic brain injury. Neurorehabil Neural Repair. 2011;25:343–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalia Paterno.

Ethics declarations

Conflict of Interest

Rosalia Paterno and Kaitlin A. Folweiler declare that they have no conflict of interest.

Akiva S. Cohen and the Children’s Hospital of Philadelphia hold a provisional patent for the use of BCAAs as a therapeutic intervention for traumatic brain injury: U.S. Provisional Patent Application Nos. 61/883,526 and 61/812,352, filed under the title “Compositions and methods for the treatment of brain injury.”

Human and Animal Rights and Informed Consent

In referenced studies from our own laboratory, all animal procedures were approved by the CHOP IACUC committee.

Additional information

This article is part of the Topical Collection on Neurotrauma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paterno, R., Folweiler, K.A. & Cohen, A.S. Pathophysiology and Treatment of Memory Dysfunction After Traumatic Brain Injury. Curr Neurol Neurosci Rep 17, 52 (2017). https://doi.org/10.1007/s11910-017-0762-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-017-0762-x

Keywords

Navigation