Skip to main content

Advertisement

Log in

Future Directions in Imaging Neurodegeneration

  • Neuroimaging (DJ Brooks, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Neuroimaging comprises a powerful set of instruments to diagnose various neurodegenerative disorders, clarifies their neurobiology, and monitors their treatment. Magnetic resonance imaging depicts volume changes, as well as abnormalities in functional and structural connectivity. Positron emission tomography (PET) allows for the quantification of regional cerebral metabolism, characteristically altered in Alzheimer’s disease, amyotrophic lateral sclerosis, diffuse Lewy-body disease, and the frontotemporal dementias. PET is also used to measure several neurotransmitters, such as dopamine, which is abnormal in Parkinson’s disease, and to determine the abnormal brain deposition of amyloid-β and tau, as well as brain inflammation. These instruments allow for the quantification in vivo and the longitudinal follow-up of key neurobiological events in neurodegeneration. For instance, amyloid imaging is being used not only to determine who has excess amyloid in the brain but also to investigate whether removing it may slow the deposition of tau and delay cognitive impairment in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Austria)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Knopman DS, Jack Jr CR, Wiste HJ, et al. Age and neurodegeneration imaging biomarkers in persons with Alzheimer disease dementia. Neurology. 2016;87:691–8.

    Article  CAS  PubMed  Google Scholar 

  2. Klunk WE, Koeppe RA, Price JC, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015;11:1–15. e11-14.

    Article  PubMed  Google Scholar 

  3. Scholl M, Lockhart SN, Schonhaut DR, et al. PET imaging of tau deposition in the aging human brain. Neuron. 2016;89:971–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnson KA, Schultz A, Betensky RA, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol. 2016;79:110–9.

    Article  PubMed  Google Scholar 

  5. Sanchez-Juan P, Ghosh PM, Hagen J, et al. Practical utility of amyloid and FDG-PET in an academic dementia center. Neurology. 2014;82:230–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sperling RA, Rentz DM, Johnson KA, et al. The A4 study: stopping AD before symptoms begin? Sci Transl Med. 2014;6:228fs213.

    Article  CAS  Google Scholar 

  7. Mungas D, Tractenberg R, Schneider JA, et al. A 2-process model for neuropathology of Alzheimer’s disease. Neurobiol Aging. 2014;35:301–8.

    Article  CAS  PubMed  Google Scholar 

  8. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280–92.

    Article  PubMed  PubMed Central  Google Scholar 

  9. •• Sevigny J, Chiao P, Bussiere T, et al. The antibody aducanumab reduces abeta plaques in Alzheimer’s disease. Nature. 2016;537:50–6. The first report accomplishing amyloid removal from the brain of patients with mild cognitive impairment due to AD and an associated improvement in some cognitive scores.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Jin H, Padakanti PK, et al. Radiosynthesis and in vivo evaluation of two PET radioligands for imaging alpha-synuclein. Appl Sci (Basel). 2014;4:66–78.

    Article  CAS  Google Scholar 

  11. ALS Association (2016) ALS find a cure. http://www.alsa.org/news/media/press-releases/grand-challenge-generation-020816.html.

  12. Jack Jr CR, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Villemagne VL, Burnham S, Bourgeat P, et al. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12:357–67.

    Article  CAS  PubMed  Google Scholar 

  14. Yau WY, Tudorascu DL, McDade EM, et al. Longitudinal assessment of neuroimaging and clinical markers in autosomal dominant Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2015;14:804–13.

    Article  PubMed  PubMed Central  Google Scholar 

  15. • Petersen RC, Wiste HJ, Weigand SD, et al. Association of elevated amyloid levels with cognition and biomarkers in cognitively normal people from the community. JAMA Neurol. 2016;73:85–92. This is a large longitudinal study in healthy elderly at the Mayo Clinic showing how a positive abeta PET study increases the risk of developing cognitive impairment.

    Article  PubMed  PubMed Central  Google Scholar 

  16. • Burnham SC, Bourgeat P, Dore V, et al. Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease pathophysiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study. Lancet Neurol. 2016;15:1044–53. This is a large longitudinal study in healthy elderly at Melbourne showing how a positive abeta PET study increases the risk of developing cognitive impairment.

    Article  PubMed  Google Scholar 

  17. Jack Jr CR, Bennett DA, Blennow K, et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vos SJ, Xiong C, Visser PJ, et al. Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol. 2013;12:957–65.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Su Y, Blazey TM, Owen CJ, et al. Quantitative amyloid imaging in autosomal dominant Alzheimer’s disease: results from the DIAN study group. PLoS One. 2016;11, e0152082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mosconi L, Rinne JO, Tsui WH, et al. Amyloid and metabolic positron emission tomography imaging of cognitively normal adults with Alzheimer’s parents. Neurobiol Aging. 2013;34:22–34.

    Article  CAS  PubMed  Google Scholar 

  21. Orban P, Madjar C, Savard M, et al. Test-retest resting-state fMRI in healthy elderly persons with a family history of Alzheimer’s disease. Sci Data. 2015;2:150043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bron EE, Steketee RM, Houston GC, et al. Diagnostic classification of arterial spin labeling and structural MRI in presenile early stage dementia. Hum Brain Mapp. 2014;35:4916–31.

    Article  PubMed  Google Scholar 

  23. Andrews KA, Frost C, Modat M, et al. Acceleration of hippocampal atrophy rates in asymptomatic amyloidosis. Neurobiol Aging. 2016;39:99–107.

    Article  CAS  PubMed  Google Scholar 

  24. • Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8. Recent genetic data implying inflammation-related gene variants as risk factors for Alzheimer’s disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. •• Guerreiro R, Wojtas A, Bras J, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368:117–27. Recent genetic data implying inflammation-related gene variants as risk factors for Alzheimer’s disease.

    Article  CAS  PubMed  Google Scholar 

  26. • Bradshaw EM, Chibnik LB, Keenan BT, et al. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci. 2013;16:848–50. Recent genetic data implying inflammation-related gene variants as risk factors for Alzheimer’s disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Villeneuve S, Rabinovici GD, Cohn-Sheehy BI, et al. Existing Pittsburgh compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. Brain. 2015;138:2020–33.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Murray ME, Lowe VJ, Graff-Radford NR, et al. Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer’s disease spectrum. Brain. 2015;138:1370–81.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Choi SR, Schneider JA, Bennett DA, et al. Correlation of amyloid PET ligand florbetapir F 18 binding with abeta aggregation and neuritic plaque deposition in postmortem brain tissue. Alzheimer Dis Assoc Disord. 2012;26:8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wolk DA, Grachev ID, Buckley C, et al. Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology. Arch Neurol. 2011;68:1398–403.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sabri O, Sabbagh MN, Seibyl J, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer disease: phase 3 study. Alzheimers Dement. 2015;11:964–72.

    Article  PubMed  Google Scholar 

  32. • Palmqvist S, Zetterberg H, Mattsson N, et al. Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease. Neurology. 2015;85:1240–9. This study shows the good correlation between abeta CSF and abeta PET in the early stages of the AD process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jack Jr CR, Lowe VJ, Senjem ML, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain. 2008;131:665–80.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Villemagne VL, Pike KE, Chetelat G, et al. Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69:181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chetelat G, Villemagne VL, Pike KE, et al. Relationship between memory performance and beta-amyloid deposition at different stages of Alzheimer’s disease. Neurodegener Dis. 2012;10:141–4.

    Article  CAS  PubMed  Google Scholar 

  36. Vlassenko AG, Mintun MA, Xiong C, et al. Amyloid-beta plaque growth in cognitively normal adults: longitudinal [11C]Pittsburgh compound B data. Ann Neurol. 2011;70:857–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lim YY, Laws SM, Villemagne VL, et al. Abeta-related memory decline in APOE epsilon4 noncarriers: implications for Alzheimer disease. Neurology. 2016;86:1635–42.

    Article  CAS  PubMed  Google Scholar 

  38. Landau SM, Marks SM, Mormino EC, et al. Association of lifetime cognitive engagement and low beta-amyloid deposition. Arch Neurol. 2012;69:623–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vemuri P, Lesnick TG, Przybelski SA, et al. Effect of intellectual enrichment on AD biomarker trajectories: longitudinal imaging study. Neurology. 2016;86:1128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brown BM, Rainey-Smith SR, Villemagne VL, et al. The relationship between sleep quality and brain amyloid burden. Sleep. 2016;39:1063–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schreiber S, Landau SM, Fero A, et al. Comparison of visual and quantitative florbetapir F 18 positron emission tomography analysis in predicting mild cognitive impairment outcomes. JAMA Neurol. 2015;72:1183–90.

    Article  PubMed  Google Scholar 

  42. Kantarci K, Lowe V, Przybelski SA, et al. APOE modifies the association between Abeta load and cognition in cognitively normal older adults. Neurology. 2012;78:232–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lim YY, Villemagne VL, Laws SM, et al. BDNF Val66Met, Abeta amyloid, and cognitive decline in preclinical Alzheimer’s disease. Neurobiol Aging. 2013;34:2457–64.

    Article  CAS  PubMed  Google Scholar 

  44. Rabinovici GD, Rosen HJ, Alkalay A, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011;77:2034–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Serrano GE, Sabbagh MN, Sue LI, et al. Positive florbetapir PET amyloid imaging in a subject with frequent cortical neuritic plaques and frontotemporal lobar degeneration with TDP43-positive inclusions. J Alzheimers Dis. 2014;42:813–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Vellas B, Carrillo MC, Sampaio C, et al. Designing drug trials for Alzheimer’s disease: what we have learned from the release of the phase III antibody trials: a report from the EU/US/CTAD Task Force. Alzheimers Dement. 2013;9:438–44.

    Article  PubMed  Google Scholar 

  47. Petersen RC, Aisen P, Boeve BF, et al. Mild cognitive impairment due to alzheimer’s disease in the community. Ann Neurol. 2013;74:199–208.

    PubMed  PubMed Central  Google Scholar 

  48. Mathis CA, Kuller LH, Klunk WE, et al. In vivo assessment of amyloid-beta deposition in nondemented very elderly subjects. Ann Neurol. 2013;73:751–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Monsell SE, Mock C, Roe CM, et al. Comparison of symptomatic and asymptomatic persons with Alzheimer disease neuropathology. Neurology. 2013;80:2121–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nelson PT, Head E, Schmitt FA, et al. Alzheimer’s disease is not “brain aging”: neuropathological, genetic, and epidemiological human studies. Acta Neuropathol. 2011;121:571–87.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Perez-Nievas BG, Stein TD, Tai HC, et al. Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. Brain. 2013;136:2510–26.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sperling R, Salloway S, Brooks DJ, et al. Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol. 2012;11:241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shin J, Kepe V, Barrio JR, et al. The merits of FDDNP-PET imaging in Alzheimer’s disease. J Alzheimers Dis. 2011;26:135–45.

    PubMed  Google Scholar 

  54. Jonasson M, Wall A, Chiotis K, et al. Tracer kinetic analysis of (S)-(1)(8)F-THK5117 as a PET tracer for assessing tau pathology. J Nucl Med. 2016;57:574–81.

    Article  PubMed  Google Scholar 

  55. Chien DT, Bahri S, Szardenings AK, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 2013;34:457–68.

    CAS  PubMed  Google Scholar 

  56. Maruyama M, Shimada H, Suhara T, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79:1094–108.

    Article  CAS  PubMed  Google Scholar 

  57. Villemagne VL, Fodero-Tavoletti MT, Masters CL, et al. Tau imaging: early progress and future directions. Lancet Neurol. 2015;14:114–24.

    Article  PubMed  Google Scholar 

  58. Chiotis K, Saint-Aubert L, Savitcheva I, et al. Imaging in-vivo tau pathology in Alzheimer’s disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging. 2016;43:1686–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Harada R, Okamura N, Furumoto S, et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57:208–14.

    Article  CAS  PubMed  Google Scholar 

  60. Pascual B, Masdeu JC. Tau, amyloid, and hypometabolism in the logopenic variant of primary progressive aphasia. Neurology. 2016;86:487–8.

    Article  PubMed  Google Scholar 

  61. Pascual B, Rockers E, Bajaj S, et al. Older healthy people have increased vascular permeability in regions showing “off-target” [18F]AV-1451 uptake. Alzheimer Assoc Int Conf. 2016;Abstract a9714.

  62. Ikonomovic MD, Abrahamson EE, Price JC, et al. [F-18]AV-1451 positron emission tomography retention in choroid plexus: More than “off-target” binding. Ann Neurol. 2016;80:307–8.

    Article  PubMed  Google Scholar 

  63. Marquie M, Normandin MD, Vanderburg CR, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78:787–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hansen AK, Knudsen K, Lillethorup TP, et al. In vivo imaging of neuromelanin in Parkinson’s disease using 18F-AV-1451 PET. Brain. 2016;139:2039–49.

    Article  PubMed  Google Scholar 

  65. • Ossenkoppele R, Schonhaut DR, Scholl M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain. 2016;139:1551–67. This is an early study showing a good correlation between the topography of tau deposition in vivo and the clinical phenotype.

    Article  PubMed  Google Scholar 

  66. Lowe VJ, Curran G, Fang P, et al. An autoradiographic evaluation of AV-1451 tau PET in dementia. Acta Neuropathol Commun. 2016;4:58. doi:10.1186/s40478-016-0315-6.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Smith R, Schain M, Nilsson C, et al. Increased basal ganglia binding of 18F-AV-1451 in patients with progressive supranuclear palsy. Mov Disord. 2016. doi:10.1002/mds.26813.

    PubMed Central  Google Scholar 

  68. Josephs KA, Whitwell JL, Tacik P, et al. [18F]AV-1451 tau-PET uptake does correlate with quantitatively measured 4R-tau burden in autopsy-confirmed corticobasal degeneration. Acta Neuropathol. 2016; (in press, on line)

  69. Taniguchi-Watanabe S, Arai T, Kametani F, et al. Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta Neuropathol. 2016;131:267–80.

    Article  CAS  PubMed  Google Scholar 

  70. Smith R, Puschmann A, Scholl M, et al. 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers. Brain. 2016;139:2372–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang L, Benzinger TL, Su Y, et al. Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between beta-amyloid and tauopathy. JAMA Neurol. 2016;73:1070–7.

    Article  PubMed  Google Scholar 

  72. Nelson PT, Alafuzoff I, Bigio EH, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71:362–81.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Finnema SJ, Nabulsi NB, Eid T, et al. Imaging synaptic density in the living human brain. Sci Transl Med. 2016;8:348ra396.

    Article  Google Scholar 

  74. O’Brien JT, Firbank MJ, Davison C, et al. 18F-FDG PET and perfusion SPECT in the diagnosis of Alzheimer and Lewy body dementias. J Nucl Med. 2014;55:1959–65.

    Article  PubMed  CAS  Google Scholar 

  75. Herholz K. Guidance for reading FDG PET scans in dementia patients. Q J Nucl Med Mol Imaging. 2014;58:332–43.

    CAS  PubMed  Google Scholar 

  76. Chen K, Ayutyanont N, Langbaum JB, et al. Characterizing Alzheimer’s disease using a hypometabolic convergence index. Neuroimage. 2011;56:52–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bozoki, AC, Korolev, IO, Davis, NC, et al. Disruption of limbic white matter pathways in mild cognitive impairment and Alzheimer’s disease: A DTI/FDG-PET Study. Hum Brain Mapp. 2011

  78. Drzezga A, Becker JA, Van Dijk KR, et al. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain. 2011;134:1635–46.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Caroli A, Prestia A, Chen K, et al. Summary metrics to assess Alzheimer disease-related hypometabolic pattern with 18F-FDG PET: head-to-head comparison. J Nucl Med. 2012;53:592–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wong CY, Thie J, Gaskill M, et al. A statistical investigation of normal regional intra-subject heterogeneity of brain metabolism and perfusion by F-18 FDG and O-15 H2O PET imaging. BMC Nucl Med. 2006;6:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Chen Y, Wolk DA, Reddin JS, et al. Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology. 2011;77:1977–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Buchbinder BR. Functional magnetic resonance imaging. Handb Clin Neurol. 2016;135:61–92.

    Article  PubMed  Google Scholar 

  83. Power JD, Barnes KA, Snyder AZ, et al. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–54.

    Article  PubMed  Google Scholar 

  84. Jacobs HI, Van Boxtel MP, Heinecke A, et al. Functional integration of parietal lobe activity in early Alzheimer disease. Neurology. 2012;78:352–60.

    Article  CAS  PubMed  Google Scholar 

  85. Bondi MW, Houston WS, Eyler LT, et al. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology. 2005;64:501–8.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med. 2000;343:450–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Trivedi MA, Schmitz TW, Ries ML, et al. fMRI activation during episodic encoding and metacognitive appraisal across the lifespan: risk factors for Alzheimer’s disease. Neuropsychologia. 2008;46:1667–78.

    Article  PubMed  Google Scholar 

  88. Mondadori CR, de Quervain DJ, Buchmann A, et al. Better memory and neural efficiency in young apolipoprotein E epsilon4 carriers. Cereb Cortex. 2007;17:1934–47.

    Article  PubMed  Google Scholar 

  89. Nichols LM, Masdeu JC, Mattay VS, et al. Interactive effect of apolipoprotein E genotype and age on hippocampal activation during memory processing in healthy adults. Arch Gen Psychiatry. 2012;69:804–13.

    Article  CAS  PubMed  Google Scholar 

  90. Dickerson BC, Salat DH, Bates JF, et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol. 2004;56:27–35.

    Article  PubMed  PubMed Central  Google Scholar 

  91. O’Brien JL, O’Keefe KM, LaViolette PS, et al. Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology. 2010;74:1969–76.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Masdeu J, Aronson M. CT findings in early dementia. The Gerontologist. 1985;25:82.

    Google Scholar 

  93. Jack Jr CR, Knopman DS, Chetelat G, et al. Suspected non-Alzheimer disease pathophysiology—concept and controversy. Nat Rev Neurol. 2016;12:117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Reiman EM, Quiroz YT, Fleisher AS, et al. Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a case-control study. Lancet Neurol. 2012;11:1048–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Apostolova LG, Hwang KS, Medina LD, et al. Cortical and hippocampal atrophy in patients with autosomal dominant familial Alzheimer’s disease. Dement Geriatr Cogn Disord. 2011;32:118–25.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Caroli A, Prestia A, Galluzzi S, et al. Mild cognitive impairment with suspected nonamyloid pathology (SNAP): prediction of progression. Neurology. 2015;84:508–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Scheltens P, Fox N, Barkhof F, et al. Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol. 2002;1:13–21.

    Article  PubMed  Google Scholar 

  99. Kloppel S, Stonnington CM, Barnes J, et al. Accuracy of dementia diagnosis: a direct comparison between radiologists and a computerized method. Brain. 2008;131:2969–74.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wolz R, Julkunen V, Koikkalainen J, et al. Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PLoS One. 2011;6:e25446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hua X, Leow AD, Parikshak N, et al. Tensor-based morphometry as a neuroimaging biomarker for Alzheimer’s disease: an MRI study of 676 AD, MCI, and normal subjects. Neuroimage. 2008;43:458–69.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Heister D, Brewer JB, Magda S, et al. Predicting MCI outcome with clinically available MRI and CSF biomarkers. Neurology. 2011;77:1619–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Whitwell JL, Dickson DW, Murray ME, et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. Lancet Neurol. 2012;11:868–77.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ringman JM, O’Neill J, Geschwind D, et al. Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer’s disease mutations. Brain. 2007;130:1767–76.

    Article  PubMed  Google Scholar 

  105. Smith CD, Chebrolu H, Andersen AH, et al. White matter diffusion alterations in normal women at risk of Alzheimer’s disease. Neurobiol Aging. 2010;31:1122–31.

    Article  PubMed  Google Scholar 

  106. Fortea J, Sala-Llonch R, Bartres-Faz D, et al. Increased cortical thickness and caudate volume precede atrophy in PSEN1 mutation carriers. J Alzheimers Dis. 2010;22:909–22.

    CAS  PubMed  Google Scholar 

  107. Kim WH, Adluru N, Chung MK, et al. Multi-resolution statistical analysis of brain connectivity graphs in preclinical Alzheimer’s disease. Neuroimage. 2015;118:103–17.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Douaud G, Jbabdi S, Behrens TE, et al. DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage. 2011;55:880–90.

    Article  PubMed  Google Scholar 

  109. Wee CY, Yap PT, Zhang D, et al. Identification of MCI individuals using structural and functional connectivity networks. Neuroimage. 2012;59:2045–56.

    Article  PubMed  Google Scholar 

  110. O’Dwyer L, Lamberton F, Bokde AL, et al. Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PLoS One. 2012;7, e32441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ferretti MT, Cuello AC. Does a pro-Inflammatory process precede Alzheimer’s disease and mild cognitive impairment? Curr Alzheimer Res. 2011;8:164–74.

    Article  CAS  PubMed  Google Scholar 

  112. Serrano-Pozo A, Mielke ML, Gomez-Isla T, et al. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am J Pathol. 2011;179:1373–84.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hoozemans JJ, Rozemuller AJ, van Haastert ES, et al. Neuroinflammation in Alzheimer’s disease wanes with age. J Neuroinflammation. 2011;8:171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Maeda J, Zhang MR, Okauchi T, et al. In vivo positron emission tomographic imaging of glial responses to amyloid-beta and tau pathologies in mouse models of Alzheimer’s disease and related disorders. J Neurosci. 2011;31:4720–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Okello A, Edison P, Archer HA, et al. Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology. 2009;72:56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kreisl WC, Fujita M, Fujimura Y, et al. Comparison of [(11)C]-(R)-PK 11195 and [(11)C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: implications for positron emission tomographic imaging of this inflammation biomarker. Neuroimage. 2010;49:2924–32.

    Article  CAS  PubMed  Google Scholar 

  117. Cagnin A, Brooks DJ, Kennedy AM, et al. In-vivo measurement of activated microglia in dementia. Lancet. 2001;358:461–7.

    Article  CAS  PubMed  Google Scholar 

  118. Schuitemaker A, Kropholler MA, Boellaard R, et al. Microglial activation in Alzheimer’s disease: an (R)-[(1)(1)C]PK11195 positron emission tomography study. Neurobiol Aging. 2013;34:128–36.

    Article  CAS  PubMed  Google Scholar 

  119. Edison P, Archer HA, Gerhard A, et al. Microglia, amyloid, and cognition in Alzheimer’s disease: an 11C (R)PK11195-PET and 11C PIB-PET study. Neurobiol Dis. 2008;32:412–9.

    Article  CAS  PubMed  Google Scholar 

  120. Kreisl WC, Lyoo CH, McGwier M, et al. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain. 2013;136:2228–38.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Lyoo CH, Ikawa M, Liow JS, et al. Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect neuroinflammation measured with PET radioligand binding to translocator protein. J Nucl Med. 2015;56:701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Carter SF, Scholl M, Almkvist O, et al. Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med. 2012;53:37–46.

    Article  CAS  PubMed  Google Scholar 

  123. Brun A, Englund E. Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology. 1981;5:549–64.

    Article  CAS  PubMed  Google Scholar 

  124. Pascual B, Prieto E, Arbizu J, et al. Decreased carbon-11-flumazenil binding in early Alzheimer’s disease. Brain. 2012;135:2817–25.

    Article  PubMed  Google Scholar 

  125. Dickerson BC, Bakkour A, Salat DH, et al. The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex. 2009;19:497–510.

    Article  PubMed  Google Scholar 

  126. Seeley WW, Crawford RK, Zhou J, et al. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62:42–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Spinelli EG, Agosta F, Ferraro PM, et al. Brain MR imaging in patients with lower motor neuron-predominant disease. Radiology. 2016;280:545–56.

    Article  PubMed  Google Scholar 

  128. Lehmann M, Madison CM, Ghosh PM, et al. Intrinsic connectivity networks in healthy subjects explain clinical variability in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2013;110:11606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhou J, Gennatas ED, Kramer JH, et al. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron. 2012;73:1216–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sepulcre J, Schultz AP, Sabuncu M, et al. In vivo tau, amyloid, and gray matter profiles in the aging brain. J Neurosci. 2016;36:7364–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sepulcre J, Masdeu JC. Advanced neuroimaging methods towards characterization of early stages of AD. In: Castrillo JI, Oliver SG, editors. Systems Biology of Alzheimer’s Disease. London: Humana Press; 2015.

    Google Scholar 

  132. Hebb DO. Distinctive features of learning in the higher animal. In: Delafresnaye JF, editor. Brain Mechanisms and Learning. London: Oxford University Press; 1961. p. 37–46.

    Google Scholar 

  133. Sepulcre J, Sabuncu MR, Johnson KA. Network assemblies in the functional brain. Curr Opin Neurol. 2012;25:384–91.

    PubMed  PubMed Central  Google Scholar 

  134. de Calignon A, Polydoro M, Suarez-Calvet M, et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron. 2012;73:685–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Liu L, Drouet V, Wu JW, et al. Trans-synaptic spread of tau pathology in vivo. PLoS One. 2012;7, e31302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Luk KC, Kehm V, Carroll J, et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338:949–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Prusiner SB. Biology and genetics of prions causing neurodegeneration. Annu Rev Genet. 2013;47:601–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Franklin BS, Bossaller L, De Nardo D, et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol. 2014;15:727–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rowe CC, Pejoska S, Mulligan RS, et al. Head-to-head comparison of 11C-PiB and 18F-AZD4694 (NAV4694) for beta-amyloid imaging in aging and dementia. J Nucl Med. 2013;54:880–6.

    Article  CAS  PubMed  Google Scholar 

  140. Landau SM, Thomas BA, Thurfjell L, et al. Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging. 2014;41:1398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph C. Masdeu.

Ethics declarations

Conflict of Interest

Joseph C. Masdeu is a consultant for General Electric Healthcare and has received research support from this company, from Lilly, and from AVID Radiopharmaceuticals.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding

This work was supported by the Nantz National Alzheimer Center, Houston Methodist Stanley H. Appel Department of Neurology and by the Houston Methodist Research Institute.

Additional information

This article is part of the Topical Collection on Neuroimaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masdeu, J.C. Future Directions in Imaging Neurodegeneration. Curr Neurol Neurosci Rep 17, 9 (2017). https://doi.org/10.1007/s11910-017-0718-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-017-0718-1

Keywords

Navigation