Skip to main content

Advertisement

Log in

Diagnostic Criteria, Classification and Treatment Goals in Multiple Sclerosis: The Chronicles of Time and Space

  • Demyelinating Disorders (DN Bourdette and M Cameron, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is one of the most diverse human diseases. Since its first description by Charcot in the nineteenth century, the diagnostic criteria, clinical course classification, and treatment goals for MS have been constantly revised and updated to improve diagnostic accuracy, physician communication, and clinical trial design. These changes have improved the clinical outcomes and quality of life for patients with the disease. Recent technological and research breakthroughs will almost certainly further change how we diagnose, classify, and treat MS in the future. In this review, we summarize the key events in the history of MS, explain the reasoning behind the current criteria for MS diagnosis, classification, and treatment, and provide suggestions for further improvements that will keep enhancing the clinical practice of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Aktas O, Ullrich O, Infante-Duarte C, Nitsch R, Zipp F. Neuronal damage in brain inflammation. Arch Neurol. 2007;64:185–9.

    Article  PubMed  Google Scholar 

  2. Kuhlmann T, Miron V, Cuo Q, Wegner C, Antel J, Brück W. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain. 2008;131:1749–58.

    Article  CAS  PubMed  Google Scholar 

  3. Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol. 2006;59:478–89.

    Article  CAS  PubMed  Google Scholar 

  4. Trapp BD, Nave K-A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008;31:247–69.

    Article  CAS  PubMed  Google Scholar 

  5. Goldenberg MM. Multiple sclerosis review. P T. 2012;37:175–84.

    PubMed  PubMed Central  Google Scholar 

  6. Derwenskus J, Lublin FD. Future treatment approaches to multiple sclerosis. Handb Clin Neurol. 2014;122:563–77.

    Article  PubMed  Google Scholar 

  7. Gafson A, Giovannoni G, Hawkes CH. The diagnostic criteria for multiple sclerosis: from Charcot to McDonald. Mult Scler Relat Disord. 2012; 1(1):9–14. doi:10.1016/j.msard.2011.08.002.

  8. Allison RS, Millar JH. Prevalence of disseminated sclerosis in Northern Ireland. Ulster Med J. 1954;23:1–27.

    CAS  PubMed  Google Scholar 

  9. Broman T, Bergmann L, Fog T, Gilland O, Hyllested K, Lindberg-Broman AM, et al. Aspects on classification methods in multiple sclerosis. Acta Neurol Scand Suppl. 1965;13 Pt 2:543–8.

    CAS  PubMed  Google Scholar 

  10. Schumacher GA, Beebe G, Kibler RF, Kurland LT, Kurtzke JF, Mcdowell F, et al. Problems of experimental trials of therapy in multiple sclerosis: report by the panel on the evaluation of experimental trials of therapy in multiple sclerosis. Ann N Y Acad Sci. 1965;122:552–68.

    Article  CAS  PubMed  Google Scholar 

  11. Poser CM, Brinar VV. Diagnostic criteria for multiple sclerosis: an historical review. Clin Neurol Neurosurg. 2004;106:147–58.

    Article  PubMed  Google Scholar 

  12. Rose AS, Ellison GW, Myers LW, Tourtellotte WW. Criteria for the clinical diagnosis of multiple sclerosis. Neurology. 1976;26:20–2.

    Article  CAS  PubMed  Google Scholar 

  13. McDonald WI, Halliday AM. Diagnosis and classification of multiple sclerosis. Br Med Bull. 1977;33:4–9.

    CAS  PubMed  Google Scholar 

  14. Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983;13:227–31.

    Article  CAS  PubMed  Google Scholar 

  15. Izquierdo G, Hauw JJ, Lyon-Caen O, Marteau R, Escourolle R, Buge A, et al. Value of multiple sclerosis diagnostic criteria. 70 autopsy-confirmed cases. Arch Neurol. 1985;42:848–50.

    Article  CAS  PubMed  Google Scholar 

  16. Engell T. A clinico-pathoanatomical study of multiple sclerosis diagnosis. Acta Neurol Scand. 1988;78:39–44.

    Article  CAS  PubMed  Google Scholar 

  17. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann Neurol. 2001;50:121–7.

    Article  CAS  PubMed  Google Scholar 

  18. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria.” Ann Neurol. 2005;58:840–6. doi:10.1002/ana.20703.

  19. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. Wiley Subscription Services, Inc. A Wiley Company. 2011;69:292–302.

    Google Scholar 

  20. Swanton JK, Rovira A, Tintore M, Altmann DR, Barkhof F, Filippi M, et al. MRI criteria for multiple sclerosis in patients presenting with clinically isolated syndromes: a multicentre retrospective study. Lancet Neurol. 2007;6:677–86.

    Article  PubMed  Google Scholar 

  21. Dalton CM, Brex PA, Miszkiel KA, Hickman SJ, MacManus DG, Plant GT, et al. Application of the new Mcdonald criteria to patients with clinically isolated syndromes suggestive of multiple sclerosis. Ann Neurol. 2002;52:47–53.

    Article  PubMed  Google Scholar 

  22. Pia SM. The Will Rogers phenomenon: the effect of different diagnostic criteria. J Neurol Sci Elsevier. 2009;287:S46–9.

    Article  Google Scholar 

  23. Sormani MP, Tintorè M, Rovaris M, Rovira A, Vidal X, Bruzzi P, et al. Will Rogers phenomenon in multiple sclerosis. Ann Neurol. 2008;64:428–33.

    Article  PubMed  Google Scholar 

  24. Frohman EM, Balcer LJ, Calabresi PA. Multiple sclerosis: can retinal imaging accurately detect optic neuritis? Nat Rev Neurol. 2010;6:125–6.

    Article  PubMed  Google Scholar 

  25. Calabrese M, De Stefano N, Atzori M, et al. DEtection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Arch Neurol. 2007;64:1416–22.

    Article  PubMed  Google Scholar 

  26. Calabrese M, Rocca MA, Atzori M, Mattisi I, Bernardi V, Favaretto A, et al. Cortical lesions in primary progressive multiple sclerosis: a 2-year longitudinal MR study. Neurology. 2009;72:1330–6.

    Article  CAS  PubMed  Google Scholar 

  27. Calabrese M, Rocca MA, Atzori M, Mattisi I, Favaretto A, Perini P, et al. A 3-year magnetic resonance imaging study of cortical lesions in relapse-onset multiple sclerosis. Ann Neurol. 2010;67:376–83.

    PubMed  Google Scholar 

  28. Filippi M, Rocca MA, Calabrese M, Sormani MP, Rinaldi F, Perini P, et al. Intracortical lesions: relevance for new MRI diagnostic criteria for multiple sclerosis. Neurology. 2010;75:1988–94.

    Article  CAS  PubMed  Google Scholar 

  29. Harel A, Ceccarelli A, Farrell C, Fabian M, Howard J, Riley C, et al. Phase-sensitive inversion-recovery mri improves longitudinal cortical lesion detection in progressive MS. PLoS One. 2016;11:e0152180.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rocca MA, Agosta F, Sormani MP, Fernando K, Tintorè M, Korteweg T, et al. A three-year, multi-parametric MRI study in patients at presentation with CIS. J Neurol. 2008;255:683–91.

    Article  PubMed  Google Scholar 

  31. Filippi M. In-vivo tissue characterization of multiple sclerosis and other white matter diseases using magnetic resonance based techniques. J Neurol. 2001;248:1019–29.

    Article  CAS  PubMed  Google Scholar 

  32. Awad A, Hemmer B, Hartung HP, Kieseier B, Bennett JL, Stuve O. Analyses of cerebrospinal fluid in the diagnosis and monitoring of multiple sclerosis. J Neuroimmunol. 2010;219(1-2):1–7. doi:10.1016/j.jneuroim.2009.09.002.

  33. Brettschneider J, Jaskowski TD, Tumani H, Abdul S, Husebye D, Seraj H, et al. Serum anti-GAGA4 IgM antibodies differentiate relapsing remitting and secondary progressive multiple sclerosis from primary progressive multiple sclerosis and other neurological diseases. J Neuroimmunol. 2009;217:95–101.

    Article  CAS  PubMed  Google Scholar 

  34. Quintana FJ, Farez MF, Viglietta V, Iglesias AH, Merbl Y, Izquierdo G, et al. Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc Natl Acad Sci U S A. 2008;105:18889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M, et al. Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. Martin DP, editor. PLoS One. Public Library of Science; 2009;4:e7440.

  36. Srivastava R, Aslam M, Kalluri SR, Schirmer L, Buck D, Tackenberg B, et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med. 2012;367:115–23.

    Article  CAS  PubMed  Google Scholar 

  37. Granberg T, Martola J, Kristoffersen-Wiberg M, Aspelin P, Fredrikson S. Radiologically isolated syndrome—incidental magnetic resonance imaging findings suggestive of multiple sclerosis, a systematic review. Mult Scler. 2013;19:271–80.

    Article  PubMed  Google Scholar 

  38. Okuda DT, Siva A, Kantarci O, Inglese M, Katz I, Tutuncu M, et al. Radiologically isolated syndrome: 5-year risk for an initial clinical event. PLoS One. 2014;9:e90509.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lebrun. The radiologically isolated syndrome Le syndrome radiologique isole. Rev. Neurol. (Paris). 2015;171:698–706.

  40. Okuda DT, Mowry EM, Beheshtian A, Waubant E, Baranzini SE, Goodin DS, et al. Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology. 2009;72:800–5.

    Article  CAS  PubMed  Google Scholar 

  41. Whitaker JN, McFarland HF, Rudge P, Reingold SC. Outcomes assessment in multiple sclerosis clinical trials: a critical analysis. Mult Scler. 1995;1:37–47.

    CAS  PubMed  Google Scholar 

  42. Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology. 1996;46:907–11.

    Article  CAS  PubMed  Google Scholar 

  43. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83:278–86. The new multiple scleroris clinical course classifications.

    Article  PubMed  PubMed Central  Google Scholar 

  44. IFN Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology. 1993;43:655–61.

    Article  Google Scholar 

  45. Fred L. History of modern multiple sclerosis therapy. J Neurol. 2005;252:3–9.

    Article  Google Scholar 

  46. Imitola J, Racke MMK, LK F, CJ B, DL R, RA N, et al. Is No Evidence of Disease Activity a Realistic Goal for Patients With Multiple Sclerosis? JAMA Neurol. American Medical Association; 2014;72:22–4. A great review about the current treatment goals of multiple sclerosis therapy.

  47. Bevan CJ, Cree BAC, JK A, E H, G G, LRE-W K, et al. Disease activity free status. JAMA Neurol. American Medical Association; 2014;71:269.

  48. Havrdova E, Galetta S, Hutchinson M, Stefoski D, Bates D, Polman CH, et al. Effect of natalizumab on clinical and radiological disease activity in multiple sclerosis: a retrospective analysis of the Natalizumab Safety and Efficacy in Relapsing-Remitting Multiple Sclerosis (AFFIRM) study. Lancet Neurol. 2009;8:254–60.

    Article  PubMed  Google Scholar 

  49. Trojano M. Multiple sclerosis: the evolving diagnostic criteria for multiple sclerosis. Nat Rev Neurol Nature Publishing Group. 2011;7:251–2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achilles Ntranos.

Ethics declarations

Conflict of Interest

Achilles Ntranos declares that he has no conflict of interest.

Fred Lublin has received consultancy fees from Biogen Idec, Teva Neuroscience, Bayer Healthcare, EMD Serono, Novartis, Pfizer, Acetelion, Sanofi Genzyme, Acorda, Questcor, Roche/Genentech, Celgene, Johnson & Johnson, Revalesio, MedDay, Medimmune, TG Therapeutics, Xenoport, Medicinova, Atara Biotherapeutics, Receptos, Forward Pharma, Akros, Amgen, and Abvie. Dr. Lublin also has received grants from Celgene, Sanofi, Acorda, and Novartis as well as payment for lectures from Genzyme and Genentech.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Demyelinating Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntranos, A., Lublin, F. Diagnostic Criteria, Classification and Treatment Goals in Multiple Sclerosis: The Chronicles of Time and Space. Curr Neurol Neurosci Rep 16, 90 (2016). https://doi.org/10.1007/s11910-016-0688-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-016-0688-8

Keywords

Navigation