Skip to main content

Using Patient-Derived Induced Pluripotent Stem Cells to Model and Treat Epilepsies

Abstract

Human induced pluripotent stem cells (iPSCs) are transforming the fields of disease modeling and precision therapy. For the treatment of neurological disorders, iPSCs introduce the possibility for targeted cell-based therapies by deriving patient-specific neural tissue in vitro that may ultimately be used for transplantation. We review iPSC technologies and their applications that have already advanced our understanding of neurological disorders, focusing on the epilepsies. We also discuss the application of powerful new tools such as genome editing and multi-well, multi-electrode array recording platforms to iPSC disease modeling and therapy development for the epilepsies. Despite some limitations, the field of iPSCs is evolving rapidly and is quickly becoming vital for understanding mechanisms of genetic epilepsies and for future patient-specific therapeutic applications.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    CAS  PubMed  Article  Google Scholar 

  2. Takahashi K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    CAS  PubMed  Article  Google Scholar 

  3. Pasca SP, Panagiotakos G, Dolmetsch RE. Generating human neurons in vitro and using them to understand neuropsychiatric disease. Annu Rev Neurosci. 2014;37:479–501.

    CAS  PubMed  Article  Google Scholar 

  4. Parent JM, Anderson SA. Reprogramming patient-derived cells to study the epilepsies. Nat Neurosci. 2015;18(3):360–6.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  5. Marchetto MC et al. Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises. Hum Mol Genet. 2011;20(R2):R109–15.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  6. Dolmetsch R, Geschwind DH. The human brain in a dish: the promise of iPSC-derived neurons. Cell. 2011;145(6):831–4.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  7. Wang L et al. Generation of integration-free neural progenitor cells from cells in human urine. Nat Methods. 2013;10(1):84–9.

    CAS  PubMed  Article  Google Scholar 

  8. Zhou T et al. Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol. 2011;22(7):1221–8.

    PubMed Central  PubMed  Article  Google Scholar 

  9. Yu J et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324(5928):797–801.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  10. Fusaki N et al. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348–62.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  11. Srikanth P, Young-Pearse TL. Stem cells on the brain: modeling neurodevelopmental and neurodegenerative diseases using human induced pluripotent stem cells. J Neurogenet. 2014;28(1–2):5–29.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  12. Guo Z et al. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell. 2014;14(2):188–202.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  13. Thier M et al. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell. 2012;10(4):473–9.

    CAS  PubMed  Article  Google Scholar 

  14. Chen Y, Cao J, Xiong M, Petersen AJ, Dong Y, Tao Y, Huang CT, Du Z, Zhang SC. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell. 2015;17(2):233–44. doi:10.1016/j.stem.2015.06.

  15. Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. 2013;110(39):15644–9. doi:10.1073/pnas.1313587110.

  16. Miller AR et al. Mapping genetic modifiers of survival in a mouse model of dravet syndrome. Genes Brain Behav. 2014;13(2):163–72.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  17. Nicholas CR et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell. 2013;12(5):573–86.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  18. Miller JD et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell. 2013;13(6):691–705.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  19. Bardy C et al. Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proc Natl Acad Sci U S A. 2015;112:E2725–34.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  20. Tomoda K et al. Derivation conditions impact X-inactivation status in female human induced pluripotent stem cells. Cell Stem Cell. 2012;11(1):91–9.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  21. Tchieu J et al. Female human iPSCs retain an inactive X chromosome. Cell Stem Cell. 2010;7(3):329–42.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  22. Mekhoubad S et al. Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell. 2012;10(5):595–609.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  23. Shoffner JM et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell. 1990;61(6):931–7.

    CAS  PubMed  Article  Google Scholar 

  24. Noebels J. Pathway-driven discovery of epilepsy genes. Nat Neurosci. 2015;18(3):344–50.

    CAS  PubMed  Article  Google Scholar 

  25. Higurashi N et al. A human Dravet syndrome model from patient induced pluripotent stem cells. Mol Brain. 2013;6:19.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  26. Jiao J et al. Modeling Dravet syndrome using induced pluripotent stem cells (iPSCs) and directly converted neurons. Hum Mol Genet. 2013;22(21):4241–52.

    CAS  PubMed  Article  Google Scholar 

  27. Liu Y et al. Dravet syndrome patient-derived neurons suggest a novel epilepsy mechanism. Ann Neurol. 2013;74(1):128–39. This paper, which resulted from my laboratory’s collaborative efforts with several other groups, represents one of the first iPSC studies of a genetic epilepsy, Dravet syndrome. We found electrophysiological abnormalities in neurons derived from Dravet syndrome patient iPSCs that may point to a new mechanism for disease pathogenesis.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  28. Chamberlain SJ et al. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc Natl Acad Sci U S A. 2010;107(41):17668–73.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  29. Ricciardi S et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol. 2012;14(9):911–23.

    CAS  PubMed  Article  Google Scholar 

  30. Livide G et al. GluD1 is a common altered player in neuronal differentiation from both MECP2-mutated and CDKL5-mutated iPS cells. Eur J Hum Genet. 2015;23(2):195–201.

    CAS  PubMed  Article  Google Scholar 

  31. Ogiwara I et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci. 2007;27(22):5903–14.

    CAS  PubMed  Article  Google Scholar 

  32. Yu FH et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci. 2006;9(9):1142–9.

    CAS  PubMed  Article  Google Scholar 

  33. Tai C et al. Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. Proc Natl Acad Sci U S A. 2014;111(30):E3139–48.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  34. Mistry AM et al. Strain- and age-dependent Hippocampal neuron sodium currents correlate with epilepsy severity in Dravet syndrome mice. Neurobiol Dis. 2014;65:1–11.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  35. Marchetto MC et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010;143(4):527–39.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  36. Cheung AY et al. Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet. 2011;20(11):2103–15.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  37. Ananiev G et al. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One. 2011;6(9):e25255.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  38. Kim KY, Hysolli E, Park IH. Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proc Natl Acad Sci U S A. 2011;108(34):14169–74.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  39. Urbach A et al. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell. 2010;6(5):407–11.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  40. Liu J et al. Signaling defects in iPSC-derived fragile X premutation neurons. Hum Mol Genet. 2012;21(17):3795–805.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  41. Bar-Nur O, Caspi I, Benvenisty N. Molecular analysis of FMR1 reactivation in fragile-X induced pluripotent stem cells and their neuronal derivatives. J Mol Cell Biol. 2012;4(3):180–3.

    PubMed  Article  Google Scholar 

  42. Sheridan SD et al. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One. 2011;6(10):e26203.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  43. Telias M, Segal M, Ben-Yosef D. Neural differentiation of fragile X human embryonic stem cells reveals abnormal patterns of development despite successful neurogenesis. Dev Biol. 2013;374(1):32–45.

    CAS  PubMed  Article  Google Scholar 

  44. Pasca SP et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med. 2011;17(12):1657–62.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  45. Yazawa M et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature. 2011;471(7337):230–4.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  46. Krey JF et al. Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat Neurosci. 2013;16(2):201–9.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  47. Yoon KJ et al. Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell. 2014;15(1):79–91. This paper elegantly demonstrates that defects found in neurons derived from patient iPSCs can then be recapitulated in vivo in mice thereby demonstrating the feasbility and robustness of iPSC work.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  48. Shcheglovitov A et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature. 2013;503(7475):267–71. This study by Shcheglovitov et al. using autism patient iPSCs demonstrates that differentiated neurons have a synaptic transmission defect that can be ameliorated by the restoration of SHANK3 or introduction of IGF1. This work shows that in vitro defects can be corrected and give rise to the possibility of translation to clinical use.

    CAS  PubMed  Google Scholar 

  49. Shorvon S, Tomson T. Sudden unexpected death in epilepsy. Lancet. 2011;378(9808):2028–38.

    PubMed  Article  Google Scholar 

  50. Ficker DM et al. Population-based study of the incidence of sudden unexplained death in epilepsy. Neurology. 1998;51(5):1270–4.

    CAS  PubMed  Article  Google Scholar 

  51. Mulley JC et al. Channelopathies as a genetic cause of epilepsy. Curr Opin Neurol. 2003;16(2):171–6.

    CAS  PubMed  Article  Google Scholar 

  52. Boheler KR et al. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res. 2002;91(3):189–201.

    CAS  PubMed  Article  Google Scholar 

  53. Lian X et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc. 2013;8(1):162–75.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  54. Menendez L et al. Directed differentiation of human pluripotent cells to neural crest stem cells. Nat Protoc. 2013;8(1):203–12.

    CAS  PubMed  Article  Google Scholar 

  55. Lee G et al. Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc. 2010;5(4):688–701.

    CAS  PubMed  Article  Google Scholar 

  56. Chambers SM et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat Biotechnol. 2012;30(7):715–20.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  57. Tornero D et al. Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain. 2013;136(Pt 12):3561–77.

    PubMed  Article  Google Scholar 

  58. Emborg ME et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep. 2013;3(3):646–50.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  59. Southwell DG et al. Interneurons from embryonic development to cell-based therapy. Science. 2014;344(6180):1240622.

    PubMed Central  PubMed  Article  Google Scholar 

  60. Hunt RF et al. GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior. Nat Neurosci. 2013;16(6):692–7.

    CAS  PubMed  Article  Google Scholar 

  61. Liu Y et al. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat Protoc. 2013;8(9):1670–9.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  62. Maroof AM et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell. 2013;12(5):559–72.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  63. Cunningham M et al. HPSC-derived maturing GABAergic interneurons ameliorate seizures and abnormal behavior in epileptic mice. Cell Stem Cell. 2014;15(5):559–73.

    CAS  PubMed  Article  Google Scholar 

  64. Lancaster MA et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373–9. This work by Lancaster et al. is a breakthrough in the stem cell research field by demonstrating that pluripotent stem cells can be grown in 3D culture to make a cerebral organoid, a miniature structure that mimics the human brain in various aspects.

    CAS  PubMed  Article  Google Scholar 

  65. Chambers SM et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275–80.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  66. Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc. 2012;7(10):1836–46.

    CAS  PubMed  Article  Google Scholar 

  67. Yu DX et al. Modeling Hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Rep. 2014;2(3):295–310.

    CAS  Article  Google Scholar 

  68. Hu BY, Zhang SC. Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc. 2009;4(9):1295–304.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  69. Karumbayaram S et al. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells. 2009;27(4):806–11.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  70. Kriks S et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011;480(7378):547–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Swistowski A et al. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells. 2010;28(10):1893–904.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  72. Juopperi TA et al. Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol Brain. 2012;5:17.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  73. Krencik R, Zhang SC. Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nat Protoc. 2011;6(11):1710–7.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  74. Hu BY, Du ZW, Zhang SC. Differentiation of human oligodendrocytes from pluripotent stem cells. Nat Protoc. 2009;4(11):1614–22.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  75. Lippmann ES et al. Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol. 2012;30(8):783–91.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Xixi Du and Jack M. Parent declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack M. Parent.

Additional information

This article is part of the Topical Collection on Epilepsy

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, X., Parent, J.M. Using Patient-Derived Induced Pluripotent Stem Cells to Model and Treat Epilepsies. Curr Neurol Neurosci Rep 15, 71 (2015). https://doi.org/10.1007/s11910-015-0588-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0588-3

Keywords

  • Epilepsy
  • Induced pluripotent stem cell
  • Cerebral organoid
  • Neural progenitor
  • Seizure disorder