Skip to main content

Genetic Discoveries Drive Molecular Analyses and Targeted Therapeutic Options in the Epilepsies

Abstract

Epilepsy is a serious neurological disease with substantial genetic contribution. We have recently made major advances in understanding the genetics and etiology of the epilepsies. However, current antiepileptic drugs are ineffective in nearly one third of patients. Most of these drugs were developed without knowledge of the underlying causes of the epilepsy to be treated; thus, it seems reasonable to assume that further improvements require a deeper understanding of epilepsy pathophysiology. Although once the rate-limiting step, gene discovery is now occurring at an unprecedented rapid rate, especially in the epileptic encephalopathies. However, to place these genetic findings in a biological context and discover treatment options for patients, we must focus on developing an efficient framework for functional evaluation of the mutations that cause epilepsy. In this review, we discuss guidelines for gene discovery, emerging functional assays and models, and novel therapeutics to highlight the developing framework of precision medicine in the epilepsies.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–5.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Delanty N, Goldstein DB. Diagnostic exome sequencing: a new paradigm in neurology. Neuron. 2013;80(4):841–3.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    England MJ, Liverman CT, Schultz AM, Strawbridge LM. Epilepsy across the spectrum: promoting health and understanding. A summary of the institute of medicine report. Epilepsy Behav E&B. 2012;25(2):266–76.

    Article  Google Scholar 

  4. 4.

    Speed D, O'Brien TJ, Palotie A, Shkura K, Marson AG, Balding DJ, et al. Describing the genetic architecture of epilepsy through heritability analysis. Brain J Neurol. 2014;137(Pt 10):2680–9.

    Article  Google Scholar 

  5. 5.

    Berkovic SF, Howell RA, Hay DA, Hopper JL. Epilepsies in twins: genetics of the major epilepsy syndromes. Ann Neurol. 1998;43(4):435–45.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Miller LL, Pellock JM, DeLorenzo RJ, Meyer JM, Corey LA. Univariate genetic analyses of epilepsy and seizures in a population-based twin study: the Virginia twin registry. Genet Epidemiol. 1998;15(1):33–49.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Kjeldsen MJ, Kyvik KO, Christensen K, Friis ML. Genetic and environmental factors in epilepsy: a population-based study of 11900 Danish twin pairs. Epilepsy Res. 2001;44(2-3):167–78.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Peljto AL, Barker-Cummings C, Vasoli VM, Leibson CL, Hauser WA, Buchhalter JR, et al. Familial risk of epilepsy: a population-based study. Brain J Neurol. 2014;137(Pt 3):795–805.

    Article  Google Scholar 

  9. 9.

    Thomas RH, Berkovic SF. The hidden genetics of epilepsy—a clinically important new paradigm. Nat Rev Neurol. 2014;10(5):283–92.

    Article  PubMed  Google Scholar 

  10. 10.

    MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508(7497):469–76.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  11. 11.

    Helbig I, Scheffer IE, Mulley JC, Berkovic SF. Navigating the channels and beyond: unravelling the genetics of the epilepsies. Lancet Neurol. 2008;7(3):231–45.

    Article  PubMed  Google Scholar 

  12. 12.

    Christensen J, Pedersen MG, Pedersen CB, Sidenius P, Olsen J, Vestergaard M. Long-term risk of epilepsy after traumatic brain injury in children and young adults: a population-based cohort study. Lancet. 2009;373(9669):1105–10.

    Article  PubMed  Google Scholar 

  13. 13.

    Kariuki SM, Rockett K, Clark TG, Reyburn H, Agbenyega T, Taylor TE, et al. The genetic risk of acute seizures in African children with falciparum malaria. Epilepsia. 2013;54(6):990–1001.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  14. 14.

    Dichgans M. Genetics of ischaemic stroke. Lancet Neurol. 2007;6(2):149–61.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Crompton DE, Scheffer IE, Taylor I, Cook MJ, McKelvie PA, Vears DF, et al. Familial mesial temporal lobe epilepsy: a benign epilepsy syndrome showing complex inheritance. Brain J Neurol. 2010;133(11):3221–31.

    Article  Google Scholar 

  16. 16.

    Speed D, Hoggart C, Petrovski S, Tachmazidou I, Coffey A, Jorgensen A, et al. A genome-wide association study and biological pathway analysis of epilepsy prognosis in a prospective cohort of newly treated epilepsy. Hum Mol Genet. 2014;23(1):247–58.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. 17.

    Consortium E, Consortium EM, Steffens M, Leu C, Ruppert AK, Zara F, et al. Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32. Hum Mol Genet. 2012;21(24):5359–72.

    Article  Google Scholar 

  18. 18.

    Kasperaviciute D, Catarino CB, Heinzen EL, Depondt C, Cavalleri GL, Caboclo LO, et al. Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study. Brain J Neurol. 2010;133(Pt 7):2136–47.

    Article  Google Scholar 

  19. 19.

    Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7.

    Article  Google Scholar 

  20. 20.

    ILAE Consortium on Complex Epilepsies. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurol. 2014;13(9):893–903.

    Article  Google Scholar 

  21. 21.

    Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants create synthetic genome-wide associations. PLoS Biol. 2010;8(1):e1000294.

    PubMed Central  Article  PubMed  Google Scholar 

  22. 22.

    Helbig I, Mefford HC, Sharp AJ, Guipponi M, Fichera M, Franke A, et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet. 2009;41(2):160–2.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  23. 23.

    Heinzen EL, Radtke RA, Urban TJ, Cavalleri GL, Depondt C, Need AC, et al. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am J Human Genet. 2010;86(5):707–18.

    CAS  Article  Google Scholar 

  24. 24.

    Mefford HC, Muhle H, Ostertag P, von Spiczak S, Buysse K, Baker C, et al. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet. 2010;6(5):e1000962.

    PubMed Central  Article  PubMed  Google Scholar 

  25. 25.

    de Kovel CG, Trucks H, Helbig I, Mefford HC, Baker C, Leu C, et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain J Neurol. 2010;133(Pt 1):23–32.

    Article  Google Scholar 

  26. 26.

    Dulac O. Epileptic encephalopathy. Epilepsia. 2001;42 Suppl 3:23–6.

    Article  PubMed  Google Scholar 

  27. 27.

    Epi4K Consortium. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217–21.

    Article  Google Scholar 

  28. 28.

    Carvill GL, Heavin SB, Yendle SC, McMahon JM, O'Roak BJ, Cook J, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet. 2013;45(7):825–30.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Kodera H, Kato M, Nord AS, Walsh T, Lee M, Yamanaka G, et al. Targeted capture and sequencing for detection of mutations causing early onset epileptic encephalopathy. Epilepsia. 2013;54(7):1262–9.

    Article  PubMed  Google Scholar 

  30. 30.••

    Euro Epinomics- R. E. S. Consortium, epilepsy phenome/genome project, Epi4K. Consortium. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet. 2014;95(4):360–70. In this large scale collaboration, the EuroEPINOMICS and Epi4K consortia examined de novo mutations in 356 trios. They identified causal mutations in 12 % of the trios and interestingly, 75 % of these mutations occurred in genes involved in vesicle trafficing. This finding suggests that synaptic dysregulation plays an important role in the epileptic encephalopathies.

    Article  Google Scholar 

  31. 31.

    Veeramah KR, Johnstone L, Karafet TM, Wolf D, Sprissler R, Salogiannis J, et al. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia. 2013;54(7):1270–81.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  32. 32.

    Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P, et al. A de novo paradigm for mental retardation. Nat Genet. 2010;42(12):1109–12.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012;485(7397):242–5.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  34. 34.

    Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature. 2012;488(7412):471–5.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  35. 35.

    Heinzen EL, Neale BM, Traynelis SF, Allen AS, Goldstein DB. The Genetics of Neuropsychiatric Diseases: Looking In and Beyond the Exome. Annu Rev Neurosci. 2015.

  36. 36.

    Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 2013;9(8):e1003709.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  37. 37.

    Samocha KE, Robinson EB, Sanders SJ, Stevens C, Sabo A, McGrath LM, et al. A framework for the interpretation of de novo mutation in human disease. Nat Genet. 2014;46(9):944–50.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  38. 38.

    Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452–7. Web Server issue.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  39. 39.

    Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Current protocols in human genetics / editorial board, Jonathan L Haines [et al]. 2013;Chapter 7:Unit7 20.

  40. 40.

    Grone BP, Baraban SC. Animal models in epilepsy research: legacies and new directions. Nat Neurosci. 2015;18(3):339–43.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Fetcho JR. The utility of zebrafish for studies of the comparative biology of motor systems. J Exp Zool B Mol Dev Evol. 2007;308(5):550–62.

    Article  PubMed  Google Scholar 

  42. 42.

    Holder N, Xu Q. The zebrafish: an overview of its early development. Methods Mol Biol. 2008;461:483–91.

    Article  PubMed  Google Scholar 

  43. 43.

    Best JD, Alderton WK. Zebrafish: an in vivo model for the study of neurological diseases. Neuropsychiatr Dis Treat. 2008;4(3):567–76.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  44. 44.

    Hortopan GA, Dinday MT, Baraban SC. Zebrafish as a model for studying genetic aspects of epilepsy. Dis Model Mech. 2010;3(3-4):144–8.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Stewart AM, Desmond D, Kyzar E, Gaikwad S, Roth A, Riehl R, et al. Perspectives of zebrafish models of epilepsy: what, how and where next? Brain Res Bull. 2012;87(2-3):135–43.

    Article  PubMed  Google Scholar 

  46. 46.

    Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC. A primer for morpholino use in zebrafish. Zebrafish. 2009;6(1):69–77.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  47. 47.

    Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31(3):227–9.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  48. 48.•

    Baraban SC, Dinday MT, Hortopan GA. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential dravet syndrome treatment. Nat Commun. 2013;4:2410. In this paper, Baraban and colleagues illustrate the power of the zebrafish model for drug discovery by creating an Scn1a mutant line and testing a re-purposed drug library. They found that clemizole may be a promising candidate drug for the treatment of Dravet syndrome.

    PubMed Central  Article  PubMed  Google Scholar 

  49. 49.

    Teng Y, Xie X, Walker S, Rempala G, Kozlowski DJ, Mumm JS, et al. Knockdown of zebrafish Lgi1a results in abnormal development, brain defects and a seizure-like behavioral phenotype. Hum Mol Genet. 2010;19(22):4409–20.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  50. 50.

    Suls A, Jaehn JA, Kecskes A, Weber Y, Weckhuysen S, Craiu DC, et al. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome. Am J Hum Genet. 2013;93(5):967–75.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  51. 51.

    Schubert J, Siekierska A, Langlois M, May P, Huneau C, Becker F, et al. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes. Nat Genet. 2014;46(12):1327–32.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Hafezparast M, Ahmad-Annuar A, Wood NW, Tabrizi SJ, Fisher EM. Mouse models for neurological disease. Lancet Neurol. 2002;1(4):215–24.

    Article  PubMed  Google Scholar 

  53. 53.

    Harper A. Mouse models of neurological disorders—a comparison of heritable and acquired traits. Biochim Biophys Acta. 2010;1802(10):785–95.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159(2):440–55.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32(4):347–55.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  56. 56.

    Boumil RM, Letts VA, Roberts MC, Lenz C, Mahaffey CL, Zhang ZW, et al. A missense mutation in a highly conserved alternate exon of dynamin-1 causes epilepsy in fitful mice. PLoS Genet. 2010;6(8).

  57. 57.

    Dhindsa RS, Bradrick SS, Yao X, Heinzen EL, Petrovski S, Krueger BJ, et al. Epileptic encephalopathy-causing mutations in DNM1 impair synaptic vesicle endocytosis. Neurol Genet. 2015;1(1):e4.

    Article  Google Scholar 

  58. 58.

    Valentin A. Techniques used to study epilepsy in the laboratory: experimental techniques in basic neurophysiology. In: Gonzalo A, Valentin A, editors. Introduction to epilepsy. 1. New York: Cambridge University Press; 2012. p. 32.

    Google Scholar 

  59. 59.

    Drapeau P, Ali DW, Buss RR, Saint-Amant L. In vivo recording from identifiable neurons of the locomotor network in the developing zebrafish. J Neurosci Methods. 1999;88(1):1–13.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Wei H-p, Yao Y-y, Zhang R-w, Zhao X-f, Du J-l. Activity-induced long-term potentiation of excitatory synapses in developing zebrafish retina in vivo. Neuron. 2012;75(3):479–89.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Nagtegaal AP, Borst JGG. In vivo dynamic clamp study of Ih in the mouse inferior colliculus. J Neurophysiol. 2010;104(2):940–8.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Ma C, Donnelly DF, LaMotte RH. In vivo visualization and functional characterization of primary somatic neurons. J Neurosci Methods. 2010;191(1):60–5.

    PubMed Central  Article  PubMed  Google Scholar 

  63. 63.

    Yajuan X, Xin L, Zhiyuan L. A comparison of the performance and application differences between manual and automated patch-clamp techniques. Curr Chem Genomics. 2012;6:87–92.

    PubMed Central  Article  PubMed  Google Scholar 

  64. 64.

    Zhao Y, Inayat S, Dikin DA, Singer JH, Ruoff RS, Troy JB. Patch clamp technique: review of the current state of the art and potential contributions from nanoengineering. Proc Inst Mech Eng N J Nanoengineering Nanosystems. 2009;222:1–11.

    Article  Google Scholar 

  65. 65.

    Spira ME, Hai A. Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotechnol. 2013;8(2):83–94.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Chen C, Chen L, Lin Y, Zeng S, Luo Q. The origin of spontaneous synchronized burst in cultured neuronal networks based on multi-electrode arrays. Biosystems. 2006;85(2):137–43.

    Article  PubMed  Google Scholar 

  67. 67.

    Valdivia P, Martin M, LeFew WR, Ross J, Houck KA, Shafer TJ. Multi-well microelectrode array recordings detect neuroactivity of ToxCast compounds. Neurotoxicology. 2014;44:204–17.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron. 2013;78(3):510–22.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  69. 69.

    Lignani G, Raimondi A, Ferrea E, Rocchi A, Paonessa F, Cesca F, et al. Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity. Hum Mol Genet. 2013;22(11):2186–99.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  70. 70.

    Gullo F, Manfredi I, Lecchi M, Casari G, Wanke E, Becchetti A. Multi-electrode array study of neuronal cultures expressing nicotinic beta2-V287L subunits, linked to autosomal dominant nocturnal frontal lobe epilepsy. An in vitro model of spontaneous epilepsy. Front Neural Circuits. 2014;8:87.

    PubMed Central  Article  PubMed  Google Scholar 

  71. 71.

    Zhu X, Need AC, Petrovski S, Goldstein DB. One gene, many neuropsychiatric disorders: lessons from Mendelian diseases. Nat Neurosci. 2014;17(6):773–81.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9(10):2329–40.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  73. 73.

    Petrovski S, Kwan P. Unraveling the genetics of common epilepsies: approaches, platforms, and caveats. Epilepsy Behav E&B. 2013;26(3):229–33.

    Article  Google Scholar 

  74. 74.

    Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314–9.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Baranano KW, Hartman AL. The ketogenic diet: uses in epilepsy and other neurologic illnesses. Curr Treat Options Neurol. 2008;10(6):410–9.

    PubMed Central  Article  PubMed  Google Scholar 

  76. 76.

    Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 2008;7(6):500–6.

    Article  PubMed  Google Scholar 

  77. 77.

    Klepper J, Scheffer H, Leiendecker B, Gertsen E, Binder S, Leferink M, et al. Seizure control and acceptance of the ketogenic diet in GLUT1 deficiency syndrome: a 2- to 5-year follow-up of 15 children enrolled prospectively. Neuropediatrics. 2005;36(5):302–8.

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Pascual JM, Wang D, Hinton V, Engelstad K, Saxena CM, Van Heertum RL, et al. Brain glucose supply and the syndrome of infantile neuroglycopenia. Arch Neurol. 2007;64(4):507–13.

    Article  PubMed  Google Scholar 

  79. 79.

    Brockmann K. The expanding phenotype of GLUT1-deficiency syndrome. Brain Dev. 2009;31(7):545–52.

    Article  PubMed  Google Scholar 

  80. 80.

    Thammongkol S, Vears DF, Bicknell-Royle J, Nation J, Draffin K, Stewart KG, et al. Efficacy of the ketogenic diet: which epilepsies respond? Epilepsia. 2012;53(3):e55–9.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Galanopoulou AS, Moshe SL. Pathogenesis and new candidate treatments for infantile spasms and early life epileptic encephalopathies: a view from preclinical studies. Neurobiol Dis. 2015;79:135–49.

    Article  PubMed  Google Scholar 

  82. 82.

    Cunliffe VT, Baines RA, Giachello CN, Lin WH, Morgan A, Reuber M, et al. Epilepsy research methods update: understanding the causes of epileptic seizures and identifying new treatments using non-mammalian model organisms. Seizure. 2015;24:44–51.

    Article  PubMed  Google Scholar 

  83. 83.

    Barcia G, Fleming MR, Deligniere A, Gazula VR, Brown MR, Langouet M, et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet. 2012;44(11):1255–9.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  84. 84.

    Heron SE, Smith KR, Bahlo M, Nobili L, Kahana E, Licchetta L, et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet. 2012;44(11):1188–90.

    CAS  Article  PubMed  Google Scholar 

  85. 85.•

    Milligan CJ, Li M, Gazina EV, Heron SE, Nair U, Trager C, et al. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol. 2014;75(4):581–90. Milligan et al. use patch clamping to illustrate that large potassium currents resulting from epilepsy causing mutations in KCNT1 can be reversed by quinidine, an FDA approved drug. This finding eventually led to targeted treatment in an EIMFS patient by Bearden et al.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  86. 86.

    Bearden D, Strong A, Ehnot J, DiGiovine M, Dlugos D, Goldberg EM. Targeted treatment of migrating partial seizures of infancy with quinidine. Ann Neurol. 2014;76(3):457–61.

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Padilla KM, Antonio BM, Santos SC, Lin Z, Theile JW, Chapman ML, et al. Approaches to understanding human ion channel genetic variation and disease - an example with a KCNT1 variant and infantile epilepsy disorder. 2014.

  88. 88.

    Carvill GL, Regan BM, Yendle SC, O'Roak BJ, Lozovaya N, Bruneau N, et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet. 2013;45(9):1073–6.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Lemke JR, Lal D, Reinthaler EM, Steiner I, Nothnagel M, Alber M, et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet. 2013;45(9):1067–72.

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Lesca G, Rudolf G, Bruneau N, Lozovaya N, Labalme A, Boutry-Kryza N, et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet. 2013;45(9):1061–6.

    CAS  Article  PubMed  Google Scholar 

  91. 91.•

    Pierson TM, Yuan H, Marsh ED, Fuentes-Fajardo K, Adams DR, Markello T, et al. Mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol. 2014;1(3):190–8. Pierson et al. use exome sequencing to detect a de novo GRIN2A mutation in a proband suffering from an epileptic encephalopathy. Functional modeling and drug screening suggested that memantine may reverse the effects of the mutation. After receiving memantine treatment, the proband experienced a reduced seizure burden.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  92. 92.

    Yuan H, Hansen KB, Zhang J, Pierson TM, Markello TC, Fajardo KV, et al. Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun. 2014;5:3251.

    PubMed Central  PubMed  Google Scholar 

  93. 93.

    Perucca P, O'Brien TJ. Epilepsy in 2014. Novel and large collaborations drive advances in epilepsy. Nat Rev Neurol. 2015;11(2):74–6.

    Article  PubMed  Google Scholar 

  94. 94.

    Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde BW, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE commission on classification and terminology, 2005-2009. Epilepsia. 2010;51(4):676–85.

    Article  PubMed  Google Scholar 

  95. 95.

    Poduri A, Sheidley BR, Shostak S, Ottman R. Genetic testing in the epilepsies-developments and dilemmas. Nat Rev Neurol. 2014;10(5):293–9.

    PubMed Central  Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Ryan S. Dhindsa and David B. Goldstein declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David B. Goldstein.

Additional information

This article is part of the Topical Collection on Epilepsy

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhindsa, R.S., Goldstein, D.B. Genetic Discoveries Drive Molecular Analyses and Targeted Therapeutic Options in the Epilepsies. Curr Neurol Neurosci Rep 15, 70 (2015). https://doi.org/10.1007/s11910-015-0587-4

Download citation

Keywords

  • Epilepsy genetics
  • Epileptic encephalopathies
  • Precision medicine
  • Epilepsy models
  • Multielectrode arrays