Skip to main content

Advertisement

Log in

Axons to Exons: the Molecular Diagnosis of Rare Neurological Diseases by Next-Generation Sequencing

  • Genetics (V Bonifati, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Neurological disorders secondary to single gene mutations are an extremely heterogeneous group of diseases, individually rare, and often associated with progressive and severe disability. Given the degree of both clinical and genetic heterogeneity, next-generation sequencing (NGS) has become an important diagnostic tool. Multi-gene panel testing based on NGS is now prominently used, while whole-exome sequencing and whole-genome sequencing are emerging to facilitate the molecular diagnosis for many genetic neurological diseases. Although single-gene testing remains an important first tier test for disorders with clear phenotype-genotype correlation, NGS provides an expanding unbiased approach to identify rare mutations in genes known to be associated with genetically heterogeneous diseases, and those not initially considered by the clinician due to rarity or atypical clinical presentation. Given the decreasing costs and relatively rapid time to results, NGS-based assessment is quickly becoming a standard-of-care test for patients with genetic neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Orphanet. Prevalence of rare diseases: bibliographic data. Orphanet reports series 2014; Rare diseases collection. http://www.orpha.net/consor/cgi-bin/Education_Home.php?lng=EN.

  2. McKusick VA. Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet. 2007;80:588–604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Federico A. Rare neurological diseases: a Pandora’s box for neurology (an European and Italian perspective). Rev Neurol. 2013;169:S12–7.

    Article  PubMed  Google Scholar 

  4. Mitsuhashi S, Kang PB. Update on the genetics of limb girdle muscular dystrophy. Semin Pediatr Neurol. 2012;19:211–8.

    Article  PubMed  Google Scholar 

  5. Shashi V, McConkie-Rosell A, Rosell B, Schoch K, Vellore K, McDonald M, et al. The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med. 2013;16:176–82.

    Article  PubMed  Google Scholar 

  6. Gahl WA, Tifft CJ. The NIH Undiagnosed Diseases Program: lessons learned. JAMA. 2011;305:1904–5.

    Article  CAS  PubMed  Google Scholar 

  7. US Department of Health Human Services. Report of the National Commission on Orphan Diseases. Publication Number HRP-090-7248. Washington, DC: US Government Printing Office; 1989.

    Google Scholar 

  8. Eurordis. EurordisCare2: survey of diagnostic delays, 8 diseases, Europe. http://www.eurordis.org/IMG/pdf/voice_12000_patients/EURORDISCARE_FULLBOOKr.pdf.

  9. Klepper J. GLUT1 deficiency syndrome and ketogenic diet therapies: missing rare but treatable diseases? Dev Med Child Neurol. 2015. doi:10.1111/dmcn.12807.

    PubMed  Google Scholar 

  10. Leen WG, Klepper J, Verbeek MM, Leferink M, Hofste T, van Engelen BG, et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133:655–70.

    Article  PubMed  Google Scholar 

  11. Toscano A, Schoser B. Enzyme replacement therapy in late-onset Pompe disease: a systematic literature review. J Neurol. 2013;260:951–9.

    Article  CAS  PubMed  Google Scholar 

  12. Benveniste O, Romero NB. Myositis or dystrophy? Traps and pitfalls. Presse Med. 2011;40:e249–55.

    Article  PubMed  Google Scholar 

  13. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med. 2013;369:1502–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lee H, Deignan JL, Dorrani N, Strom SP, Kantarci S, Quintero-Rivera F, et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA. 2014;312:1880–7. This publication reports the diagnostic rate of clinical exome sequencing for 814 patients.

  15. Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y, et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014;312:1870–9. This publication reports the diagnostic rate of clinical exome sequencing for 2000 patients. Many of these patients presented with a neurological or neurodevelopmental disease.

  16. Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BW, Willemsen MH, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511:344–7.

    Article  CAS  PubMed  Google Scholar 

  17. Rehm HL. Disease-targeted sequencing: a cornerstone in the clinic. Nat Rev Genet. 2013;14:295–300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Beaulieu CL, Majewski J, Schwartzentruber J, Samuels ME, Fernandez BA, Bernier FP, et al. FORGE Canada Consortium: outcomes of a 2-year national rare-disease gene-discovery project. Am J Hum Genet. 2014;94:809–17. This is a commentary on the success rate of 264 disorders studied by exome sequencing as part of a national consortium. It includes a stratification into categories to show the success rate of different approaches.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet. 2013;14:681–91. This publication provides an in-depth review of whole-exome and genome sequencing and their research and clinical applications.

    Article  CAS  PubMed  Google Scholar 

  20. Foo J-N, Liu J-J, Tan E-K. Whole-genome and whole-exome sequencing in neurological diseases. Nat Rev Neurol. 2012;8:508–17.

    Article  CAS  PubMed  Google Scholar 

  21. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nat Genet. 2003;33:228–37.

    Article  CAS  PubMed  Google Scholar 

  22. Ottman R, Hirose S, Jain S, Lerche H, Lopes-Cendes I, Noebels JL, et al. Genetic testing in the epilepsies—report of the ILAE Genetics Commission. Epilepsia. 2010;51:655–70.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Xue Y, Ankala A, Wilcox WR, Hegde MR. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med. 2015;17:444–51.

    Article  CAS  PubMed  Google Scholar 

  24. Ankala A, Da Silva C, Gualandi F, Ferlini A, Bean LJ, Collins C, et al. A comprehensive genomic approach for neuromuscular diseases gives a high diagnostic yield. Ann Neurol. 2015;77:206–14.

    Article  PubMed  Google Scholar 

  25. Soden SE, Saunders CJ, Willig LK, Farrow EG, Smith LD, Petrikin JE, et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med. 2014;6:265ra168.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Pyle A, Smertenko T, Bargiela D, Griffin H, Duff J, Appleton M, et al. Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain. 2015;138:276–83.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Sawyer SL, Schwartzentruber J, Beaulieu CL, Dyment D, Smith A, Chardon JW, et al. Exome sequencing as a diagnostic tool for pediatric-onset ataxia. Hum Mutat. 2014;35:45–9.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Farwell KD, Shahmirzadi L, El-Khechen D, Powis Z, Chao EC, Davis BT, et al. Enhanced utility of family-centered diagnostic exome sequencing with inheritance model-based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genet Med. 2015;17:578–86. doi:10.1038/gim.2014.154.

  29. Taylor JC, Martin HC, Lise S, Broxholme J, Cazier JB, Rimmer A, et al. Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nat Genet. 2015. doi:10.1038/ng.3304. This publication is a comprehensive study of 217 individuals using clinical whole-genome sequencing.

    Google Scholar 

  30. Martin HC, Kim GE, Pagnamenta AT, Murakami Y, Carvill GL, Meyer E, et al. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum Mol Genet. 2014;23:3200–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Willig LK, Petrikin JE, Smith LD, Saunders CJ, Thiffault I, Miller NA, et al. Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: a retrospective analysis of diagnostic and clinical findings. Lancet Respir Med. 2015;3:377–87.

    Article  CAS  PubMed  Google Scholar 

  32. Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med. 2012;4:154ra35.

    Article  Google Scholar 

  33. Lupski JR, Reid JG, Gonzaga-Jauregui C, Rio Deiros D, Chen DC, Nazareth L, et al. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med. 2010;362:1181–91. This is the first report on the application of whole-genome sequencing in neurological disease; compound heterozygous mutations were identified in SH3TC2 in a family with Charcot -Marie -Tooth disease.

  34. Gonzaga-Jauregui C, Lotze T, Jamal L, Penney S, Campbell IM, Pehlivan D, et al. Mutations in VRK1 associated with complex motor and sensory axonal neuropathy plus microcephaly. JAMA Neurol. 2013;70:1491–8.

    PubMed Central  PubMed  Google Scholar 

  35. Jarinova O, Ekker M. Regulatory variations in the era of next-generation sequencing: implications for clinical molecular diagnostics. Hum Mutat. 2012;33:1021–30.

    Article  CAS  PubMed  Google Scholar 

  36. McDonell LM, Mirzaa GM, Alcantara D, Schwartzentruber J, Carter MT, Lee LJ, et al. Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome. Nat Genet. 2013;45:556–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Sawyer SL, Hartley T, Dyment DA, Beaulieu CL, Schwartzentruber J, Smith AC, et al. Utility of whole-exome sequencing toward the end of the diagnostic odyssey: time to address gaps in care. Clin Genet. 2015. doi:10.1111/cge.12654.

  38. MacArthur D, Manolio T, Dimmock D, Rehm H, Shendure J, Abecasis G, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508:469–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Richards S, CAP NA, Bale S, Bick D, Das S, Gastier J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23.

    Article  PubMed  Google Scholar 

  40. Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT. LOVD v. 2.0: the next generation in gene variant databases. Hum Mutat. 2011;32:557–63.

    Article  CAS  PubMed  Google Scholar 

  41. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42:D980–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen—the clinical genome resource. N Engl J Med. 2015;372:2235–42.

    Article  CAS  PubMed  Google Scholar 

  43. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. van El CG, Cornel MC, Borry P, Hastings RJ, Fellmann F, Hodgson SV, et al. Whole-genome sequencing in health care. Recommendations of the European Society of Human Genetics. Eur J Hum Genet. 2013;21:S1–5.

    PubMed Central  PubMed  Google Scholar 

  45. Boycott K, Hartley T, Adam S, et al. The clinical application of genome-wide sequencing for monogenic diseases in Canada: position statement of the Canadian College of Medical Geneticists. J Med Genet. 2015;52:431–7. doi:10.1136/jmedgenet-2015-103144.

  46. Moseley ML, Benzow KA, Schut LJ, Bird TD, Gomez CM, Barkhaus PE, et al. Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology. 1998;51:1666–71.

    Article  CAS  PubMed  Google Scholar 

  47. Nemeth AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EB, Bera KD, et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain. 2013;136:3106–18.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Ohba C, Osaka H, Iai M, Yamashita S, Suzuki Y, Aida N, et al. Diagnostic utility of whole exome sequencing in patients showing cerebellar and/or vermis atrophy in childhood. Neurogenetics. 2013;14:225–32.

    Article  CAS  PubMed  Google Scholar 

  49. Fogel BL, Lee H, Deignan JL, Strom SP, Kantarci S, Wang X, et al. Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol. 2014;71:1237–46.

    Article  PubMed  Google Scholar 

  50. Girdea M, Dumitriu S, Fiume M, Bowdin S, Boycott KM, Chénier S, et al. PhenoTips: patient phenotyping software for clinical and research use. Hum Mutat. 2013;34:1057–65.

    Article  PubMed  Google Scholar 

  51. Kohler S, Doelken SC, Mungall CJ, Bauer S, Firth HV, Bailleul-Forestier I, et al. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 2014;42:D966–74.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Sobreira N, Schiettecatte F, Boehm C, Valle D, Hamosh A. New tools for Mendelian disease gene identification: PhenoDB variant analysis module; and GeneMatcher, a web-based tool for linking investigators with an interest in the same gene. Hum Mutat. 2015;36:425–31.

    Article  PubMed  Google Scholar 

  53. Bragin E, Chatzimichali EA, Wright CF, Hurles ME, Firth HV, Bevan AP, et al. DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation. Nucleic Acids Res. 2014;42:D993–D1000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Gonzalez MA, Lebrigio RF, Van Booven D, Ulloa RH, Powell E, Speziani F, et al. GEnomes Management Application (GEM.app): a new software tool for large-scale collaborative genome analysis. Hum Mutat. 2013;34:842–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Jodi Warman Chardon, Chandree Beaulieu, Taila Hartley, Kym M. Boycott, and David A. Dyment each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kym M. Boycott.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warman Chardon, J., Beaulieu, C., Hartley, T. et al. Axons to Exons: the Molecular Diagnosis of Rare Neurological Diseases by Next-Generation Sequencing. Curr Neurol Neurosci Rep 15, 64 (2015). https://doi.org/10.1007/s11910-015-0584-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0584-7

Keywords

Navigation