Skip to main content
Log in

Update in Aphasia Research

  • Behavior (HS Kirshner, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The sequelae of post-stroke aphasia are considerable, with implications at the societal and personal levels. An understanding of the mechanisms of recovery of cognitive and language processes after stroke and the factors associated with increased risk of post-stroke language and cognitive deficits is vital in providing optimal care of individuals with aphasia and in counseling to their families and caregivers. Advances in neuroimaging facilitate the identification of dysfunctional or damaged brain tissue responsible for these cognitive/language deficits and contribute insights regarding the functional neuroanatomy of language. Evidence-based person-centered behavioral therapy remains the mainstay for rehabilitation of aphasia, although emerging evidence shows that neuromodulation is a promising adjunct to traditional therapy. These topics are discussed in this review, illustrating with recent studies from the Stroke Cognitive Outcomes and REcovery (SCORE) lab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Inatomi Y, Yonehara T, Omiya S, Hashimoto Y, Hirano T, Uchino M. Aphasia during the acute phase in ischemic stroke. Cerebrovasc Dis. 2008;25(4):316–23.

    Article  CAS  PubMed  Google Scholar 

  2. Engelter ST, Gostynski M, Papa S, Frei M, Born C, Ajdacic-Gross V, et al. Epidemiology of aphasia attributable to first ischemic stroke: incidence, severity, fluency, etiology, and thrombolysis. Stroke. 2006;37(6):1379–84.

    Article  PubMed  Google Scholar 

  3. Ellis C, Dismuke C, Edwards KK. Longitudinal trends in aphasia in the United States. NeuroRehabilitation. 2010;27(4):327–33.

    PubMed  Google Scholar 

  4. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–e209.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Wise RJ. Language systems in normal and aphasic human subjects: functional imaging studies and inferences from animal studies. Br Med Bull. 2003;65:95–119.

    Article  PubMed  Google Scholar 

  6. Gialanella B, Bertolinelli M, Lissi M, Prometti P. Predicting outcome after stroke: the role of aphasia. Disabil Rehabil. 2011;33(2):122–9.

    Article  PubMed  Google Scholar 

  7. Gonzalez-Fernandez M, Christian AB, Davis C, Hillis AE. Role of aphasia in discharge location after stroke. Arch Phys Med Rehabil. 2013;94(5):851–5. The authors evaluated language deficits after acute stroke and investigated their association with post-acute discharge to a setting other than home. Individuals with deficits in auditory comprehension, reading comprehension, and tactile naming had an increased likelihood of being discharged to settings other than home. Early evaluation of language and prompt intervention may avert discharge to an institutional setting.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Urrutia V, Johnson B, Hillis AE. Relative importance of stroke sequelae according to patients and caregivers. Abstract presented at the Annual Meeting of the American Academy of Neurology. Philadelphia, PA, USA; 2014.

  9. Barker-Collo S, Feigin VL, Parag V, Lawes CM, Senior H. Auckland Stroke Outcomes Study. Part 2: cognition and functional outcomes 5 years poststroke. Neurology. 2010;75(18):1608–16.

    Article  CAS  PubMed  Google Scholar 

  10. Hillis AE. Aphasia: progress in the last quarter of a century. Neurology. 2007;69(2):200–13.

    Article  PubMed  Google Scholar 

  11. Tippett DC, Hillis AE. Vascular syndromes. In: Hickok G, Small G, editors. Neurobiology of language. San Diego, CA: Elsevier; in press (anticipated September 2015). The authors describe the vascular aphasia syndromes and discuss the usefulness of these syndromes in aphasia research and treatment.

  12. Ochfeld E, Newhart M, Molitoris J, Leigh R, Cloutman L, Davis C, et al. Ischemia in Broca area is associated with Broca aphasia more reliably in acute than in chronic stroke. Stroke. 2010;41(2):325–30.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Epstein-Peterson Z, Vasconcellos Faria A, Mori S, Hillis AE, Tsapkini K. Relatively normal repetition performance despite severe disruption of the left arcuate fasciculus. Neurocase. 2012;18(6):521–6. The authors present structural imaging, diffusion tensor imaging, and language data on a patient with a large left-sided stroke and severely damaged left arcuate fasciculus (AF) who showed intact word repetition and relatively intact sentence repetition performance. Their results challenge classical theories that maintain the left AF is the dominant language processing pathway or mechanism for repetition. The authors hypothesize that these results may be the result of various mechanisms of recovery.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Warburton E, Price CJ, Swinburn K, Wise RJ. Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J Neurol Neurosurg Psychiatry. 1999;66(2):155–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Price CJ, Crinion J. The latest on functional imaging studies of aphasic stroke. Curr Opin Neurol. 2005;18(4):429–34.

    Article  PubMed  Google Scholar 

  16. Marsh EB, Hillis AE. Recovery from aphasia following brain injury: the role of reorganization. Prog Brain Res. 2006;157:143–56.

    Article  PubMed  Google Scholar 

  17. Saur D, Lange R, Baumgaertner A, Schraknepper V, Willmes K, Rijntjes M, et al. Dynamics of language reorganization after stroke. Brain. 2006;129(Pt 6):1371–84.

    Article  PubMed  Google Scholar 

  18. Jarso S, Li M, Faria A, Davis C, Leigh R, Sebastian R, et al. Distinct mechanisms and timing of language recovery after stroke. Cogn Neuropsychol. 2013;30(7–8):454–75. The authors present case series illustrating different mechanisms of recovery in acute stroke. These mechanisms include reperfusion, recovery from diaschisis, recovery from structural disconnection, and reorganization of language.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Sebastian R, Schein MG, Davis C, Gomez Y, Newhart M, Oishi K, et al. Aphasia or neglect after thalamic stroke: the various ways they may be related to cortical hypoperfusion. Front Neurol. 2014;5:231. The authors present case series of 20 patients with acute thalamic stroke (10 left and 10 right), including imaging and cognitive/language testing. They found that language deficits could not be explained by cortical hypoperfusion, and instead could be explained by dysfunction of the thalamic-cortical system via diaschisis.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sebastian R, Kiran S. Task-modulated neural activation patterns in chronic stroke patients with aphasia. Aphasiology. 2011;25:927–51.

    Article  Google Scholar 

  21. Astrup J, Symon L, Branston NM, Lassen NA. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke. 1977;8(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  22. Campbell BC, Donnan GA, Davis SM. Vessel occlusion, penumbra, and reperfusion—translating theory to practice. Front Neurol. 2014;5:194. The authors discuss current methods to identify salvageable ischemic penumbra and medical therapy options.

    PubMed Central  PubMed  Google Scholar 

  23. Hillis AE, Tippett DC. Stroke recovery: surprising influences and residual consequences. Adv Med. 2014;2014:378263. The authors discuss the importance of cognitive/language recovery post-stroke, the mechanisms of recovery such as reperfusion in the early post-stroke period, and variables which influence recovery. Higher levels of education and anti-depressant use have positive effects on stroke recovery.

    Article  PubMed  Google Scholar 

  24. Reineck LA, Agarwal S, Hillis AE. “Diffusion-clinical mismatch” is associated with potential for early recovery of aphasia. Neurology. 2005;64(5):828–33.

    Article  PubMed  Google Scholar 

  25. Sebastian R, Gomez Y, Leigh R, Davis C, Newhart M, Hillis AE. The roles of occipitotemporal cortex in reading, spelling, and naming. Cogn Neuropsychol. 2014;31(5–6):511–28. The authors tested 234 individuals with dysfunctional tissue in Brodmann area 37 and found that this area has two roles in lexical processing that may have distinct locations within the occipitotemporal cortex. This study was completed in acute stroke patients before the opportunity for recovery and reorganization of language.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hillis AE, Barker PB, Beauchamp NJ, Gordon B, Wityk RJ. MR perfusion imaging reveals regions of hypoperfusion associated with aphasia and neglect. Neurology. 2000;55(6):782–8.

    Article  CAS  PubMed  Google Scholar 

  27. Hillis AE, Barker PB, Beauchamp NJ, Winters BD, Mirski M, Wityk RJ. Restoring blood pressure reperfused Wernicke’s area and improved language. Neurology. 2001;56(5):670–2.

    Article  CAS  PubMed  Google Scholar 

  28. Hillis AE, Kane A, Tuffiash E, Ulatowski JA, Barker PB, Beauchamp NJ, et al. Reperfusion of specific brain regions by raising blood pressure restores selective language functions in subacute stroke. Brain Lang. 2001;79(3):495–510.

    Article  CAS  PubMed  Google Scholar 

  29. Hillis AE, Ulatowski JA, Barker PB, Torbey M, Ziai W, Beauchamp NJ, et al. A pilot randomized trial of induced blood pressure elevation: effects on function and focal perfusion in acute and subacute stroke. Cerebrovasc Dis. 2003;16(3):236–46.

    Article  CAS  PubMed  Google Scholar 

  30. Hillis AE, Kleinman JT, Newhart M, Heidler-Gary J, Gottesman R, Barker PB, et al. Restoring cerebral blood flow reveals neural regions critical for naming. J Neurosci. 2006;26(31):8069–73.

    Article  CAS  PubMed  Google Scholar 

  31. Motta M, Ramadan A, Hillis AE, Gottesman RF, Leigh R. Diffusion-perfusion mismatch: an opportunity for improvement in cortical function. Front Neurol. 2015;5:280. The authors reported that non-infarcted tissue with a TTP delay of 4–5.9 s may be associated with persistent deficits. Reperfusion was associated with improvement in cognitive/language function.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Gottesman RF, Hillis AE. Predictors and assessment of cognitive dysfunction resulting from ischaemic stroke. Lancet Neurol. 2010;9(9):895–905.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Hope TM, Seghier ML, Leff AP, Price CJ. Predicting outcome and recovery after stroke with lesions extracted from MRI images. Neuroimage Clin. 2013;2:424–33. The authors present a framework to predict the severity of cognitive/language impairments after stroke, and the likely course of recovery over time. They found that reasonably accurate predictions can be made by considering the time since the patient’s stroke occurred, the volume of the patient’s lesion, and detailed information concerning damaged brain regions.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Suneja A, Gonzalez-Fernandez M, Hillis AE. Predictors of recovery of chronic aphasia. Abstract presented at the Annual Meeting of the American Academy of Neurology. Philadelphia, PA, USA; 2014.

  35. Gonzalez-Fernandez M, Davis C, Molitoris JJ, Newhart M, Leigh R, Hillis AE. Formal education, socioeconomic status, and the severity of aphasia after stroke. Arch Phys Med Rehabil. 2011;92(11):1809–13.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Plowman E, Hentz B, Ellis Jr C. Post-stroke aphasia prognosis: a review of patient-related and stroke-related factors. J Eval Clin Pract. 2012;18(3):689–94. The authors reviewed the literature to identify variables associated with post stroke recovery. They found that aphasia severity, lesion site, and lesion size, were most critical to post-stroke aphasia recovery, allowing improved prediction of post-stroke aphasia recovery.

    Article  PubMed  Google Scholar 

  37. Kertesz A. Recovery of aphasia. In: Feinberg TE, Farah MJ, editors. Behavioral neurology and neuropsychology. New York: McGraw Hill; 1997. p. 167–82.

    Google Scholar 

  38. Chapey R. Language intervention strategies in aphasia and related neurogenic communication disorders. 4th ed. Baltimore: Lippincott Williams & Wilkens; 2001.

    Google Scholar 

  39. Naeser MA, Helm-Estabrooks N, Haas G, Auerbach S, Srinivasan M. Relationship between lesion extent in ‘Wernicke’s area’ on computed tomographic scan and predicting recovery of comprehension in Wernicke’s aphasia. Arch Neurol. 1987;44(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  40. Wise RJ, Scott SK, Blank SC, Mummery CJ, Murphy K, Warburton EA. Separate neural subsystems within ‘Wernicke’s area’. Brain. 2001;124(Pt 1):83–95.

    Article  CAS  PubMed  Google Scholar 

  41. Awad M, Warren JE, Scott SK, Turkheimer FE, Wise RJ. A common system for the comprehension and production of narrative speech. J Neurosci. 2007;27(43):11455–64.

    Article  CAS  PubMed  Google Scholar 

  42. Dronkers NF, Plaisant O, Iba-Zizen MT, Cabanis EA. Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain. 2007;130(Pt 5):1432.

    Article  CAS  PubMed  Google Scholar 

  43. Fridriksson J, Bonilha L, Rorden C. Severe Broca’s aphasia without Broca’s area damage. Behav Neurol. 2007;18(4):237–8.

    Article  PubMed  Google Scholar 

  44. Kraut MA, Kremen S, Moo LR, Segal JB, Calhoun V, Hart Jr J. Object activation in semantic memory from visual multimodal feature input. J Cogn Neurosci. 2002;14(1):37.

    Article  PubMed  Google Scholar 

  45. Hillis AE, Work M, Barker PB, Jacobs MA, Breese EL, Maurer K. Re-examining the brain regions crucial for orchestrating speech articulation. Brain. 2004;127(Pt 7):1479–87.

    Article  PubMed  Google Scholar 

  46. Newhart M, Ken L, Kleinman JT, Heidler-Gary J, Hillis AE. Neural networks essential for naming and word comprehension. Cogn Behav Neurol. 2007;20(1):25–30.

    Article  PubMed  Google Scholar 

  47. Prabhakaran V, Raman SP, Grunwald MR, Mahadevia A, Hussain N, Lu H, et al. Neural substrates of word generation during stroke recovery: the influence of cortical hypoperfusion. Behav Neurol. 2007;18(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  48. Bonilha L, Fridriksson J. Subcortical damage and white matter disconnection associated with non-fluent speech. Brain. 2009;132(Pt 6):e108.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Hillis AE, Wityk RJ, Barker PB, Caramazza A. Neural regions essential for writing verbs. Nat Neurosci. 2003;6(1):19–20.

    Article  CAS  PubMed  Google Scholar 

  50. DeLeon J, Gottesman RF, Kleinman JT, Newhart M, Davis C, Heidler-Gary J, et al. Neural regions essential for distinct cognitive processes underlying picture naming. Brain. 2007;130(Pt 5):1408–22.

    Article  PubMed  Google Scholar 

  51. Tsapkini K, Frangakis CE, Hillis AE. The function of the left anterior temporal pole: evidence from acute stroke and infarct volume. Brain. 2011;134(Pt 10):3094–105.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Newhart M, Trupe LA, Gomez Y, Cloutman L, Molitoris JJ, Davis C, et al. Asyntactic comprehension, working memory, and acute ischemia in Broca’s area versus angular gyrus. Cortex. 2012;48(10):1288–97. The authors identified anatomical and cognitive causes of asyntactic comprehension. A network of brain regions, including left angular gyrus and posterior frontal cortex, have a role in asyntactic comprehension. Cognitive causes included thematic role checking and verbal working memory.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Race DS, Ochfeld E, Leigh R, Hillis AE. Lesion analysis of cortical regions associated with the comprehension of nonreversible and reversible yes/no questions. Neuropsychologia. 2012;50(8):1946–53. The authors investigated cortical regions associated with comprehension of nonreversible and reversible yes/no questions, and assessed whether these deficits were related to sentence processing and/or lexical processing. Yes/no comprehension relied on multiple cortical areas involved in sentence and lexical processing.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Lazar RM, Minzer B, Antoniello D, Festa JR, Krakauer JW, Marshall RS. Improvement in aphasia scores after stroke is well predicted by initial severity. Stroke. 2010;41(7):1485–8.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Bhogal SK, Teasell R, Speechley M. Intensity of aphasia therapy, impact on recovery. Stroke. 2003;34(4):987–93.

    Article  PubMed  Google Scholar 

  56. Brady MC, Kelly H, Godwin J, Enderby P. Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev. 2012;5:CD000425.

    PubMed  Google Scholar 

  57. Dhamoon MS, Moon YP, Paik MC, Sacco RL, Elkind MS. Trajectory of functional decline before and after ischemic stroke: the Northern Manhattan Study. Stroke. 2012;43(8):2180–4.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80(4):844–66.

    Article  CAS  PubMed  Google Scholar 

  59. American Speech-Language-Hearing Association. Evidence-based practice in communication disorders: position statement. Rockville, MD: American Speech- Language-Hearing Association; 2005. http://www.asha.org/policy.

  60. Coyle J, Leslie P. Evidence-based practice: the ethical imperative. Perspect Swallowing Swallowing Disord. 2006;15:1–11.

    Article  Google Scholar 

  61. Sackett DL, Straus SE, Richardson W, Rosenberg WS, Haynes RB. Evidence-based medicine: how to practice and teach EBM. Edinburgh: Churchill Livingstone; 2000.

    Google Scholar 

  62. Byng S, Cairns D, Duchan J. Values in practice and practising values. J Commun Disord. 2002;35(2):89–106.

    Article  PubMed  Google Scholar 

  63. Ersser SJ, Atkins S. Clinical reasoning and patient-centered care. In: Higgs J, Jones M, editors. Clinical reasoning in the health professions (2nd ed). Oxford: Butterworth Heinemann; 2000. p. 68–77.

    Google Scholar 

  64. Chapey R, Duchan RJ, Garcia LJ, Kagan A, Lyon JG, Simmons-Mackie N. Life-participation approach to aphasia: a statement of values for the future. In: Chapey R, editor. Language interventions strategies in aphasia and related neurogenic communication disorders (4th ed). Philadelphia: Lippincott Williams & Wilkins; 2001. p. 279–89.

    Google Scholar 

  65. Baum CM, Edwards D. Activity card sort. St. Louis: Washington University School of Medicine; 2001.

    Google Scholar 

  66. World Health Organization. ICF: International classification of functioning, disability and health-report. Geneva: World Health Organization; 2001.

    Google Scholar 

  67. Holland A, Thompson C. Outcome measures in aphasia. In: Frattali C, editor. Measuring outcomes in speech-language pathology. New York: Thieme; 1998. p. 245–66.

    Google Scholar 

  68. Turkstra LS, Coelho C, Ylvisaker M. The use of standardized tests for individuals with cognitive-communications disorders. Semin Speech Lang. 2005;26:215–22.

    Article  PubMed  Google Scholar 

  69. Raymer AM, Beeson P, Holland A, Kendall D, Maher LM, Martin N, et al. Translational research in aphasia: from neuroscience to neurorehabilitation. J Speech Lang Hear Res. 2008;51:S259–97.

    Article  PubMed  Google Scholar 

  70. Hickok G, Poeppel D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition. 2004;92(1–2):67–99.

    Article  PubMed  Google Scholar 

  71. Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8(5):393–402.

    Article  CAS  PubMed  Google Scholar 

  72. Rauschecker JP, Scott SK. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci. 2009;12(6):718–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Weiller C, Bormann T, Saur D, Musso M, Rijntjes M. How the ventral pathway got lost: and what its recovery might mean. Brain Lang. 2011;118(1–2):29–39.

    Article  PubMed  Google Scholar 

  74. Tippett DC, Niparko JK, Hillis AE. Aphasia: current concepts in theory and practice. J Neurol Transl Neurosci. 2014;2(1):1042. The authors explain current paradigms of neural substrates of language, such as the dual-stream model, the cognitive processes underlying aphasia, and current treatment techniques to address aphasia.

    PubMed Central  PubMed  Google Scholar 

  75. Holland R, Leff AP, Josephs O, Galea JM, Desikan M, Price CJ, et al. Speech facilitation by left inferior frontal cortex stimulation. Curr Biol. 2011;21(16):1403–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Naeser MA, Martin PI, Ho M, Treglia E, Kaplan E, Bashir S, et al. Transcranial magnetic stimulation and aphasia rehabilitation. Arch Phys Med Rehabil. 2012;93(1):S26–34. The authors describe the TMS protocol used with their patients and reported that TMS that is associated with long-term, improved naming post-TMS. They also propose possible mechanisms associated with improvement following TMS treatments in stroke patients with aphasia.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Kobayashi M, et al. Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study. Brain Lang. 2005;93(1):95–105.

    Article  PubMed  Google Scholar 

  78. Mottaghy FM, Sparing R, Topper R. Enhancing picture naming with transcranial magnetic stimulation. Behav Neurol. 2006;17(3–4):177–86.

    Article  PubMed  Google Scholar 

  79. Weiss SA, Bikson M. Open questions on the mechanisms of neuromodulation with applied and endogenous electric fields. Front Hum Neurosci. 2014;8:227.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Weiss SA, Bikson M, Priori A, Beradelli A, Rona S, Acconero N, et al. Polarization of the human motor cortex through the scalp. Neuroreport. 1998;9:2257–60.

    Article  Google Scholar 

  81. Bindman LJ, Lippold OC, Redfearn JW. Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature. 1962;196:584–5.

    Article  CAS  PubMed  Google Scholar 

  82. Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol. 1962;5:436–52.

    Article  CAS  PubMed  Google Scholar 

  83. Liebetanz D, Nitsche MA, Tergau F, Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125(Pt 10):2238–47.

    Article  PubMed  Google Scholar 

  84. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37–53.

    Article  PubMed  Google Scholar 

  86. Fiori V, Coccia M, Marinelli CV, Vecchi V, Bonifazi S, Ceravolo MG, et al. Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. J Cogn Neurosci. 2011;23(9):2309–23.

    Article  PubMed  Google Scholar 

  87. Fridriksson J, Richardson JD, Baker JM, Rorden C. Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study. Stroke. 2011;42(3):819–21.

    Article  PubMed  Google Scholar 

  88. Baker JM, Rorden C, Fridriksson J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke. 2010;41(6):1229–36.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Marangolo P, Fiori V, Campana S, Calpagnano MA, Razzano C, Caltagirone C, et al. Something to talk about: enhancement of linguistic cohesion through tDCS in chronic non fluent aphasia. Neuropsychologia. 2014;53:246–56. The authors investigated the effects of tDCS in improving speech production in eight individuals with chronic non fluent aphasia. They reported that patients showed a greater improvement in producing words that enhanced the cohesion of their speech samples after cortical stimulation to Broca’s area.

    Article  PubMed  Google Scholar 

  90. Jung IY, Lim JY, Kang EK, Sohn HM, Paik NJ. The factors associated with good responses to speech therapy combined with transcranial direct current stimulation in post-stroke aphasic patients. Ann Rehabil Med. 2011;35(4):460–9.

    Article  PubMed Central  PubMed  Google Scholar 

  91. You DS, Kim DY, Chun MH, Jung SE, Park SJ. Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients. Brain Lang. 2011;119(1):1–5.

    Article  PubMed  Google Scholar 

  92. Polania R, Paulus W, Antal A, Nitsche MA. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. Neuroimage. 2011;54(3):2287–96.

    Article  PubMed  Google Scholar 

  93. Polania R, Paulus W, Nitsche MA. Reorganizing the intrinsic functional architecture of the human primary motor cortex during rest with non-invasive cortical stimulation. PLoS One. 2012;7(1):e30971.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Polania R, Paulus W, Nitsche MA. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp. 2012;33(10):2499–508.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Donna C. Tippett declares that this publication was made possible by NIH grants R01 DC 05375 and R01 DC 03681 from NIDCD. She gratefully acknowledges this support.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna C. Tippett.

Additional information

This article is part of the Topical Collection on Behavior

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tippett, D.C. Update in Aphasia Research. Curr Neurol Neurosci Rep 15, 49 (2015). https://doi.org/10.1007/s11910-015-0573-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0573-x

Keywords

Navigation