Skip to main content

Advertisement

Log in

How Relevant Are Imaging Findings in Animal Models of Movement Disorders to Human Disease?

  • Neuroimaging (DJ Brooks, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The combination of novel imaging techniques with the use of small animal models of disease is often used in attempt to understand disease mechanisms, design potential clinical biomarkers and therapeutic interventions, and develop novel methods with translatability to human clinical conditions. However, it is clear that most animal models are deficient when compared to the complexity of human diseases: they cannot sufficiently replicate all the features of multisystem disorders. Furthermore, some practical differences may affect the use or interpretation of animal imaging to model human conditions such as the use of anesthesia, various species differences, and limitations of methodological tools. Nevertheless, imaging animal models allows us to dissect, in interpretable bits, the effects of one system upon another, the consequences of variable neuronal losses or overactive systems, the results of experimental treatments, and we can develop and validate new methods. In this review, we focus on imaging modalities that are easily used in both human subjects and animal models such as positron emission and magnetic resonance imaging and discuss aging and Parkinson’s disease as prototypical examples of preclinical imaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alstrup AKO, Landau AM, Holden J, Jakobsen S, Schacht SA, Audrain H, et al. Effects of anesthesia and species differences on uptake or binding of radioligands in vivo. Bio Med Res Int. 2013;2013(ID:808713):9.

    Google Scholar 

  2. Andersen AH, Hardy PA, Forman E, Gerhardt GA, Gash DM, Grondin RC, et al. Pharmacologic MRI (phMRI) as a tool to differentiate Parkinson's disease-related from age-related changes in basal ganglia function. Neurobiol Aging. 2015;36(2):1174–82.

    Article  PubMed  Google Scholar 

  3. Baba JS, Endres CJ, Foss CA, Nimmagadda S, Jung H, Goddard JS, et al. Molecular imaging of conscious, unrestrained mice with AwakeSPECT. J Nucl Med. 2013;54(6):969–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bagchi DP, Yu L, Perlmutter JS, Xu J, Mach RH, Tu Z, et al. Binding of the radioligand SIL23 to alpha-synuclein fibrils in Parkinson disease brain tissue establishes feasibility and screening approaches for developing a Parkinson disease imaging agent. PLoS One. 2013;8(2):e55031.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bagga P, Chugani AN, Varadarajan KS, Patel AB. In vivo NMR studies of regional cerebral energetics in MPTP model of Parkinson's disease: recovery of cerebral metabolism with acute levodopa treatment. J Neurochem. 2013;127(3):365–77.

    Article  CAS  PubMed  Google Scholar 

  6. Braak H, Del Tredici K, Rnb U, De Vos RI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  7. Brendel M, Delker A, Rotzer C, Boning G, Carlsen J, Cyran C, et al. Impact of partial volume effect correction on cerebral beta-amyloid imaging in APP-Swe mice using [(18)F]-florbetaben PET. Neuroimage. 2014;84:843–53.

    Article  PubMed  Google Scholar 

  8. Brown CA, Karimi MK, Tian L, Flores H, Su Y, Tabbal SD, et al. Validation of midbrain positron emission tomography measures for nigrostriatal neurons in macaques. Ann Neurol. 2013;74:602–10.

  9. Carta M, Carlsson T, Kirik D, Bjorklund A. Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain. 2007;130:1819–33.

    Article  PubMed  Google Scholar 

  10. Christian BT, Wooten DW, Hillmer AT, Tudorascu DL, Converse AK, Moore CF, et al. Serotonin transporter genotype affects serotonin 5-HT1A binding in primates. The Journal of Neuroscience. 2013;33(6):2512–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cicchetti F, Drouin-Ouellet J, Gross RE. Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci. 2009;30:475–83.

    Article  CAS  PubMed  Google Scholar 

  12. Cumming P, Danielsen EH, Vafaee M, Falborg L, Steffensen E, Sorensen JC, et al. Normalization of markers for dopamine innervation in striatum of MPTP-lesioned miniature pigs with intrastriatal grafts. Acta Neurol Scand. 2001;103:309–15.

    Article  CAS  PubMed  Google Scholar 

  13. Dall AM, Danielsen EH, Sorensen JC, Andersen F, Moller A, Zimmer J, et al. Quantitative [18]fluorodopa/PET and histology of fetal mesencephalic dopaminergic grafts to the striatum of MPTP-poisoned minipigs. Cell Transplant. 2002;11:733–46.

    PubMed  Google Scholar 

  14. De La Fuente-Fernández R, Sossi V, Huang Z, Furtado S, Lu J-Q, Calne DB, et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson's disease: implications for dyskinesias. Brain. 2004;127(12):2747–54.

    Article  PubMed  Google Scholar 

  15. Dinelle K, Holden JE, Sossi V, Doudet DJ. In vivo scatchard studies of the VMAT2 transporter in mice. Mol Imaging Biol. 2010;12 Suppl 1:J615.

    Google Scholar 

  16. Doudet DJ, Aigner TG, Mclellan CA, Cohen RM. Positron emission tomography with 18 F-DOPA: interpretation and biological correlates in non human primates. Psychiatry Res. 1992;45:153–68.

    Article  CAS  PubMed  Google Scholar 

  17. Doudet DJ, Chan GLY, Holden JE, Aigner TG, Wyatt RJ, Morrison KS, et al. 6-[18 F]Fluoro-L-DOPA PET studies of the turnover of dopamine in MPTP-induced parkinsonism in monkeys. Synapse. 1998;29:225–32.

    Article  CAS  PubMed  Google Scholar 

  18. Doudet DJ, Cornfeldt M, Honey C, Schweikert AW, Allen RC. PET imaging of implanted human retinal pigment epithelial cells in the MPTP-induced primate model of Parkinson's disease (PD). Exp Neurol. 2004;89:361–8.

    Article  Google Scholar 

  19. Doudet DJ, Jivan S, Ruth TJ, Holden JE. Density and affinity of the dopamine D2 receptors in aged symptomatic and asymptomatic MPTP-treated monkeys: PET studies with [11 C]raclopride. Synapse. 2002;44:198–202.

    Article  CAS  PubMed  Google Scholar 

  20. Doudet DJ, Rosa-Neto P, Munk OL, Ruth TJ, Jivan S, Cumming P. Effect of age on markers for monoaminergic neurons of normal and MPTP-lesioned rhesus monkeys: a multi-tracer PET study. NeuroImage. 2006;30:26–35.

    Article  PubMed  Google Scholar 

  21. Durand E, Petit O, Tremblay L, Zimmer C, Sgambato-Faure V, Chassain C, et al. Social behavioral changes in MPTP-treated monkey model of Parkinson’s disease. Front Behav Neurosci. 2015;9:42.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Eberling JL, Bankiewicz KS, Pivirotto P, Bringas J, Chen K, Nowotnik DP, et al. Dopamine transporter loss and clinical changes in MPTP-lesioned primates. Brain Res. 1999;832:184–7.

    Article  CAS  PubMed  Google Scholar 

  23. Eidelberg D. The metabolic landscape of Parkinson’s disease. Adv Neurol. 1999;80:87–97.

    CAS  PubMed  Google Scholar 

  24. Hadaczek P, Eberling JL, Pivirotto P, Bringas J, Forsayeth J, Bankiewicz KS. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther: J Am Soc Gene Ther. 2010;18(8):1458–61.

    Article  CAS  Google Scholar 

  25. Hannestad J, Gallezot JD, Schafbauer T, Lim K, Kloczynski T, Morris ED, et al. Endotoxin-induced systemic inflammation activates microglia: [(1)(1)C]PBR28 positron emission tomography in nonhuman primates. NeuroImage. 2012;63(1):232–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hikishima K, Ando K, Yano R, Kawai K, Komaki Y, Inoue T, et al. Parkinson disease: diffusion MR imaging to detect nigrostriatal pathway loss in a marmoset model treated with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Radiology. 2015;275(2):430–7.

    Article  PubMed  Google Scholar 

  27. Huang C, Mattis P, Perrine K, Brown N, Dhawan V, Eidelberg D. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology. 2008;70(16 Pt 2):1470–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Jakobsen S, Pedersen K, Smith DF, Jensen SB, Munk O, Cumming P. Detection of alpha2 adrenergic receptors in brain of living pig with 11 C-yohimbine. J Nucl Med. 2006;47:2008–15.

    CAS  PubMed  Google Scholar 

  29. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNG in primate models of Parkinson's disease. Science. 2000;290:767–73.

    Article  CAS  PubMed  Google Scholar 

  30. Landau AM, Phan JA, Iversen P, Lillethorup TP, Simonsen M, Wegener G, et al. Decreased in vivo alpha2 adrenoceptor binding in the Flinders sensitive line rat model of depression. Neuropharmacology. 2015;91:97–102.

    Article  CAS  PubMed  Google Scholar 

  31. Lee CS, De La Fuente-Fernandez R, Sossi V, Ruth TJ, Schulzer M, Holden JE, et al. In vivo PET studies in normal human subjects show that ratios of DAT to VMAT2 in the striatum decrease with a rostrocaudal gradient and also with aging: implications for the pathogenesis of Parkinson's disease. Neurology. 2000;54:A330.

    Google Scholar 

  32. Liu JV, Hirano Y, Nascimento GC, Stefanovic B, Leopold DA, Silva AC. fMRI in the awake marmoset: somatosensory-evoked responses, functional connectivity, and comparison with propofol anesthesia. NeuroImage. 2013;78:186–95.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ma Y, Peng S, Spetsieris PG, Sossi V, Eidelberg D, Doudet DJ. Abnormal metabolic brain networks in a nonhuman primate model of parkinsonism. J Cereb Blood Flow Metab. 2012;32(4):633–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mackeys S, Jing Y, Flores J, Dinelle K, Doudet DJ. Intranigral administration of an ubiquitin proteasome system inhibitor in rat: behavior, positron emission tomography. Immuno Histochem Exp Neurol. 2013;247:19–24.

    Article  Google Scholar 

  35. Magen I, Chesselet MF. Genetic mouse models of Parkinson's disease The state of the art. Prog Brain Res. 2010;184:53–87.

    Article  CAS  PubMed  Google Scholar 

  36. Mccormick P, Ginovart N, Wilson A. Isoflurane anaesthesia differentially affects the amphetamine sensitivity of agonist and antagonist D2/D3 positron emission tomography radiotracers: implications for < i > In Vivo</i > imaging of dopamine release. Mol Imaging Biol. 2011;13(4):737–46.

    Article  PubMed  Google Scholar 

  37. Meijer FJ, Goraj B. Brain MRI in Parkinson's disease. Front Biosci (Elite Ed). 2014;6:360–9.

    Article  Google Scholar 

  38. Minuzzi L, Olsen AK, Bender D, Amfred S, Grant R, Danielsen EH, et al. Quantitative autoradiography of ligands for dopamine receptors and transporters in brain of Gottingen minipig: comparison with results in vivo. Synapse. 2006;59:211–9.

    Article  CAS  PubMed  Google Scholar 

  39. Molinet-Dronda F, Gago B, Quiroga-Varela A, Juri C, Collantes M, Delgado M, et al. Monoaminergic PET imaging and histopathological correlation in unilateral and bilateral 6-hydroxydopamine lesioned rat models of Parkinson’s disease: a longitudinal in-vivo study. Neurobiol Dis. 2015;77:165–72.

    Article  CAS  PubMed  Google Scholar 

  40. Nahimi A, Høltzermann M, Landau AM, Simonsen M, Jakobsen S, Alstrup AKO, et al. Serotonergic modulation of receptor occupancy in rats treated with L-DOPA After Unilateral 6-OHDA Lesioning. J Neurochem. 2012;120:806–17.

    Article  CAS  PubMed  Google Scholar 

  41. Nahimi A, Jakobsen S, Munk OL, Vang K, Phan JA, Rodell A, et al. Mapping alpha2 adrenoceptors of the human brain with 11C-yohimbine. J Nucl Med. 2015;56(3):392–8.

    Article  CAS  PubMed  Google Scholar 

  42. Nikolaus S, Larisch R, Vosberg H, Beu M, Wirrwar A, Antke C, et al. Pharmacological challenge and synaptic response—assessing dopaminergic function in the rat striatum with small animal single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Rev Neurosci. 2011;22(6):625–45.

    Article  CAS  PubMed  Google Scholar 

  43. Ninerola-Baizan A, Rojas S, Roe-Vellve N, Lomena F, Ros D, Pavia J. Dopamine transporter imaging in the aged rat: a [(1)(2)(3)I]FP-CIT SPECT study. Nucl Med Biol. 2015;42(4):395–8.

    Article  CAS  PubMed  Google Scholar 

  44. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa Translocator Protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab. 2012;32(1):1–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Parent M, Bedard MA, Aliaga A, Soucy JP, Landry St-Pierre E, Cyr M, et al. PET imaging of cholinergic deficits in rats using [18F]fluoroethoxybenzovesamicol ([18F]FEOBV). Neuroimage. 2012;62(1):555–61.

    Article  CAS  PubMed  Google Scholar 

  46. Pellegrino D, Cicchetti F, Wang X, Zhu A, Yu M, Saint-Pierre M, et al. Modulation of dopaminergic and glutamatergic brain function: PET studies on parkinsonian rats. J Nucl Med. 2007;48:1147–53.

    Article  CAS  PubMed  Google Scholar 

  47. Peng S, Doudet D, Dhawan V, Ma Y. Dopamine: PET imaging and Parkinson Disease. In: Subramaniam R, Barrio JR, editors. PET Clinics: Novel Imaging Techniques in Neurodegenerative and Movement Disorders: Elsevier; 2013. p. 469-485.

  48. Phan JA, Landau AM, Wong DF, Jakobsen S, Nahimi A, Doudet DJ, et al. Quantification of [(11)C]yohimbine binding to alpha2 adrenoceptors in rat brain in vivo. J Cereb Blood Flow Metab. 2015;35(3):501–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Potts LF, Wu H, Singh A, Marcilla I, Luquin MR, Papa SM. Modeling Parkinson’s disease in monkeys for translational studies, a critical analysis. Exp Neurol. 2014;256:133–43.

    Article  CAS  PubMed  Google Scholar 

  50. Ramakrishnan NK, Rybczynska AA, Visser AK, Marosi K, Nyakas CJ, Kwizera C, et al. Small-animal PET with a sigma-ligand, 11C-SA4503, detects spontaneous pituitary tumors in aged rats. J Nucl Med. 2013;54(8):1377–83.

    Article  CAS  PubMed  Google Scholar 

  51. Rinne JO, Laihinen A, Ruottinen H, Ruotsalainen U, Nagren K, Lehikoinen P, et al. Increased density of dopamine D 2 receptors in the putamen, but not in the caudate nucleus in early Parkinson's disease: a PET study with [11 C]raclopride. J Neurol Sci. 1995;132:156–61.

    Article  CAS  PubMed  Google Scholar 

  52. Sandiego CM, Jin X, Mulnix T, Fowles K, Labaree D, Ropchan J, et al. Awake nonhuman primate brain PET imaging with minimal head restraint: evaluation of GABAA-benzodiazepine binding with 11C-flumazenil in awake and anesthetized animals. J Nucl Med. 2013;54(11):1962–8.

    Article  CAS  PubMed  Google Scholar 

  53. Shah M, Seibyl J, Cartier A, Bhatt R, Catafau AM. Molecular imaging insights into neurodegeneration: focus on alpha-synuclein radiotracers. J Nucl Med. 2014;55(9):1397–400.

    Article  CAS  PubMed  Google Scholar 

  54. Snow BJ, Tooyama I, Mcgeer EG, Yamada T, Calne DB, Takahashi H, et al. Correlations in humans between premortem [18 F]fluorodopa uptake, postmortem dopaminergic cell counts and striatal dopamine levels. Ann Neurol. 1993;34:324–30.

    Article  CAS  PubMed  Google Scholar 

  55. Sossi V, Dinelle K, Jivan S, Fisher K, Holden J, Doudet DJ. In vivo dopamine transporter imaging in a unilateral 6-hydroxydopamine rat model of Parkinson's disease using 11C-methylphenidate PET. J Nucl Med. 2012;53:813–22.

    Article  CAS  PubMed  Google Scholar 

  56. Sossi V, Holden JE, Topping GJ, Camborde ML, Kornelsen RA, Mccormick SE, et al. In vivo measurement of density and affinity of the monoamine vesicular transporter in a unilateral 6-hydroxydopamine rat model of PD. J Cereb Blood Flow Metab. 2007;27:1407–15.

    Article  CAS  PubMed  Google Scholar 

  57. Stoessl AJ, Halliday GM. DAT-SPECT diagnoses dopamine depletion, but not PD. Mov Disord. 2014;29(14):1705–6.

    Article  PubMed  Google Scholar 

  58. Strome EM, Doudet D. Animal models of neurodegenerative disease: insight from in vivo imaging studies. Mol Imaging Biol. 2007;9(4):186–95.

    Article  PubMed  Google Scholar 

  59. Sun W, Sugiyama K, Asakawa T, Yamaguchi H, Akamine S, Ouchi Y, et al. Dynamic changes of striatal dopamine D2 receptor binding at later stages after unilateral lesions of the medial forebrain bundle in Parkinsonian rat models. Neurosci Lett. 2011;496(3):157–62.

    Article  CAS  PubMed  Google Scholar 

  60. Suzuki M, Hatano K, Sakiyama Y, Kawasumi Y, Kato T, Ito K. Age-related changes of dopamine D1-like and D2-like receptor binding in the F344/N rat striatum revealed by positron emission tomography and in vitro receptor autoradiograph. Synapse. 2001:41-285.

  61. Syvänen S, Lindhe Ö, Palner M, Kornum BR, Rahman O, Långström B, et al. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-Glycoprotein transport. Drug Metab Dispos. 2009;37(3):635–43.

    Article  PubMed  Google Scholar 

  62. Tabbal SD, Mink JW, Antenor JV, Carl JL, Moerlein SM, Perlmutter JS. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced acute transient dystonia in monkeys associated with low striatal dopamine. Neuroscience. 2006;141(3):1281–7.

    Article  CAS  PubMed  Google Scholar 

  63. Tokugawa J, Ravasi L, Nakayama T, Lang L, Schmidt K, Seidel J, et al. Distribution of the 5-HT1A receptor antagonist [18F]FPWAY in blood and brain of the rat with and without isoflurane anesthesia. Eur J Nucl Med Mol Imaging. 2007;34:259–66.

    Article  CAS  PubMed  Google Scholar 

  64. Topping GJ, Dinelle K, Kornelsen R, Mccormick S, Holden JE, Sossi V. Positron emission tomography kinetic modeling algorithms for small animal dopaminergic system imaging. Synapse. 2010;64(3):200–8.

    Article  CAS  PubMed  Google Scholar 

  65. Tournier N, Valette H, Peyronneau M-A, Saba W, Goutal S, Kuhnast B, et al. Transport of selected PET radiotracers by human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2): an in vitro screening. Journal of Nuclear Medicine. 2011;52(3):415–23.

    Article  CAS  PubMed  Google Scholar 

  66. Tsukada H, Nishiyama S, Ohba H, Kanazawa M, Kakiuchi T, Harada N. Comparing amyloid-beta deposition, neuroinflammation, glucose metabolism, and mitochondrial complex I activity in brain: a PET study in aged monkeys. Eur J Nucl Med Mol Imaging. 2014;41(11):2127–36.

    Article  CAS  PubMed  Google Scholar 

  67. Tsukada H, Sato K, Kakiuchi T, Nishiyama S. Age-related impairment of coupling mechanism between neuronal activation and functional cerebral blood flow response was restored by cholinesterase inhibition: PET study with microdialysis in the awake monkey brain. Brain Res. 2000;857:158–64.

    Article  CAS  PubMed  Google Scholar 

  68. Van Camp N, Boisgard R, Kuhnast B, Thézé B, Viel T, Grégoire M-C, et al. In vivo imaging of neuroinflammation: a comparative study between [18F]PBR11; [11C]CLINME and [11C]PK11195 in an acute rodent model. Eur J Nucl Med Mol Imaging. 2010;37(5):962–72.

    Article  PubMed  Google Scholar 

  69. Van Der Perren A, Toelen J, Casteels C, Macchi F, Van Rompuy AS, Sarre S, et al. Longitudinal follow-up and characterization of a robust rat model for Parkinson’s disease based on overexpression of alpha-synuclein with adeno-associated viral vectors. Neurobiol Aging. 2015;36(3):1543–58.

    Article  PubMed  Google Scholar 

  70. Van Vliet SA, Blezer EL, Jongsma MJ, Vanwersch RA, Olivier B, Philippens IH. Exploring the neuroprotective effects of modafinil in a marmoset Parkinson model with immunohistochemistry, magnetic resonance imaging and spectroscopy. Brain Res. 2008;1189:219–28.

    Article  PubMed  Google Scholar 

  71. Vezoli J, Dzahini K, Costes N, Wilson CR, Fifel K, Cooper HM, et al. Increased DAT binding in the early stage of the dopaminergic lesion: a longitudinal [11C]PE2I binding study in the MPTP-monkey. Neuroimage. 2014;102(Pt 2):249–61.

    Article  CAS  PubMed  Google Scholar 

  72. Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 2007;447(7140):83–6.

    Article  CAS  PubMed  Google Scholar 

  73. Walker MD, Dinelle K, Kornelsen R, Lee NV, Miao Q, Adam M, et al. [C]PBR28 PET imaging is sensitive to neuroinflammation in the aged rat. J Cereb Blood Flow Metab. 2015 Apr 1.

  74. Walker MD, Dinelle K, Kornelsen R, Mccormick S, Mah C, Holden JE, et al. In-vivo measurement of LDOPA uptake, dopamine reserve and turnover in the rat brain using [18F]FDOPA PET. J Cereb Blood Flow Metab. 2013;33(1):59–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Walker MD, Volta M, Cataldi S, Dinelle K, Beccano-Kelly D, Munsie L, et al. Behavioral deficits and striatal DA signaling in LRRK2 p.G2019S transgenic rats: a multimodal investigation including PET neuroimaging. J Parkinsons Dis. 2014;4(3):483–98.

    CAS  PubMed  Google Scholar 

  76. Wu B, Song B, Tian S, Huo S, Cui C, Guo Y, et al. Central nervous system damage due to acute paraquat poisoning: a neuroimaging study with 3.0 T MRI. Neurotoxicology. 2012;33(5):1330–7.

    Article  CAS  PubMed  Google Scholar 

  77. Zimmer ER, Leuzy A, Bhat V, Gauthier S, Rosa-Neto P. In vivo tracking of tau pathology using positron emission tomography (PET) molecular imaging in small animals. Trans Neurodegeneration. 2014;3(1):6.

    Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Darryl Bannon, Anne M. Landau, and Doris J. Doudet declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris J. Doudet.

Additional information

This article is part of the Topical Collection on Neuroimaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannon, D., Landau, A.M. & Doudet, D.J. How Relevant Are Imaging Findings in Animal Models of Movement Disorders to Human Disease?. Curr Neurol Neurosci Rep 15, 53 (2015). https://doi.org/10.1007/s11910-015-0571-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0571-z

Keywords

Navigation