Dreaming and Offline Memory Consolidation

Abstract

Converging evidence suggests that dreaming is influenced by the consolidation of memory during sleep. Following encoding, recently formed memory traces are gradually stabilized and reorganized into a more permanent form of long-term storage. Sleep provides an optimal neurophysiological state to facilitate this process, allowing memory networks to be repeatedly reactivated in the absence of new sensory input. The process of memory reactivation and consolidation in the sleeping brain appears to influence conscious experience during sleep, contributing to dream content recalled on awakening. This article outlines several lines of evidence in support of this hypothesis, and responds to some common objections.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    As opposed to “symbolic”

  2. 2.

    An example report from one participant: “[I’m] seeing in my mind how the game pieces kind of float down and fit into the other pieces, and am also rotating them.”

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.

    Plihal W, Born J. Effects of early and late nocturnal sleep on declarative and procedural memory. J Cogn Neurosci. 1997;9:534–47.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Payne JD, Tucker MA, Ellenbogen JM, Wamsley EJ, Walker MP, Schacter DL, et al. Memory for semantically related and unrelated declarative information: the benefit of sleep, the cost of wake. PLoS One. 2012;7:e33079.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. 3.

    Tucker MA, Hirota Y, Wamsley EJ, Lau H, Chaklader A, Fishbein W. A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory. Neurobiol Learn Mem. 2006;86:241–7.

    PubMed  Article  Google Scholar 

  4. 4.

    Ellenbogen JM, Hulbert JC, Stickgold R, Dinges DF, Thompson-Schill SL. Interfering with theories of sleep and memory: sleep, declarative memory, and associative interference. Curr Biol. 2006;16:1290–4.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Payne JD, Stickgold R, Swanberg K, Kensinger EA. Sleep preferentially enhances memory for emotional components of scenes. Psychol Sci. 2008;19:781.

    PubMed  Article  Google Scholar 

  6. 6.

    Hu P, Stylos-Allan M, Walker MP. Sleep facilitates consolidation of emotional declarative memory. Psychol Sci. 2006;17:891–8.

    PubMed  Article  Google Scholar 

  7. 7.

    Groch S, Wilhelm I, Diekelmann S, Born J. The role of REM sleep in the processing of emotional memories: Evidence from behavior and event-related potentials. Neurobiol Learn Mem. 2013;99:1–9.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Walker MP, Brakefield T, Morgan A, Hobson JA, Stickgold R. Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron. 2002;35:205–11.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Nishida M, Walker MP. Daytime naps, motor memory consolidation and regionally specific sleep spindles. PLoS One. 2007;2:e341.

    PubMed Central  PubMed  Article  Google Scholar 

  10. 10.

    Stickgold R, James L, Hobson JA. Visual discrimination learning requires sleep after training. Nat Neurosci. 2000;3:1237–8.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Nguyen ND, Tucker MA, Stickgold R, Wamsley EJ. Overnight sleep enhances hippocampus-dependent aspects of spatial memory. Sleep. 2013;36:1051–7.

    PubMed Central  PubMed  Google Scholar 

  12. 12.

    Wamsley EJ, Tucker MA, Payne JD, Stickgold R. A brief nap is beneficial for human route-learning: the role of navigation experience and EEG spectral power. Learn Mem. 2010;17:332.

    PubMed Central  PubMed  Article  Google Scholar 

  13. 13.

    Ferrara M, Iaria G, Tempesta D, Curcio G, Moroni F, Marzano C, et al. Sleep to find your way: the role of sleep in the consolidation of memory for navigation in humans. Hippocampus. 2008;18:844–51.

    PubMed  Article  Google Scholar 

  14. 14.

    Ferrara M, Iaria G, De Gennaro L, Guariglia C, Curcio G, Tempesta D, et al. The role of sleep in the consolidation of route learning in humans: a behavioural study. Brain Res Bull. 2006;71:4–9.

    PubMed  Article  Google Scholar 

  15. 15.

    Maury A. Le sommeil et les rêves. Paris: Didier; 1865.

    Google Scholar 

  16. 16.

    de Saint-Denys H. Les rêves et les moyens de les diriger. Observations pratiques. Paris: Amyot; 1867.

    Google Scholar 

  17. 17.

    Foulkes D, Rechtschaffen A. Presleep determinants of dream content: effect of two films. Percept Mot Skills. 1964;19:983–1005.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Witkin HA, Lewis HB. Presleep experiences and dreams. New York: Random House; 1967.

    Google Scholar 

  19. 19.

    Goodenough DR, Witkin HA, Koulack D, Cohen H. The effects of stress films on dream affect and on respiration and eye-movement activity during rapid-eye-movement sleep. Psychophysiology. 1975;12:313–20.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Cartwright RD, Bernick N, Borowitz G. Effect of an erotic movie on the sleep and dreams of young men. Arch Gen Psychiatry. 1969;20:262–71.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Wamsley EJ, Stickgold R. Incorporation of waking events into dreams. In: Stickgold R, Walter MP, editors. The neuroscience of sleep. London: Academic; 2009. p. 330–6.

    Google Scholar 

  22. 22.

    Dement WC, Kahn E, Roffwarg HP. The influence of the laboratory situation on the dreams of the experimental subject. J Nerv Ment Dis. 1965;140:119–31.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Bowe-Anders C, Herman JH, Roffwarg HP. Effects of goggle-altered color perception on sleep. Percept Mot Skills. 1974;38:191–8.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Tauber ES, Roffwarg HP, Herman J. The effects of longstanding perceptual alterations on the hallucinatory content of dreams. Psychophysiology. 1968;5:219.

    Google Scholar 

  25. 25.

    Corsi-Cabrera M, Becker J, Garcia L, Ibarra R, Morales M, Souza M. Dream content after using visual inverting prisms. Percept Mot Skills. 1986;63:415–23.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    De Koninck J, Prevost F, Lortie-Lussier M. Vertical inversion of the visual field and REM sleep mentation. J Sleep Res. 1996;5:16–20.

    PubMed  Article  Google Scholar 

  27. 27.

    Fiss H, Kremer E, Litchman J. The mnemonic function of dreaming. Sleep Res. 1977;6:122.

    Google Scholar 

  28. 28.

    De Koninck J, Christ G, Hébert G, Rinfret N. Language learning efficiency, dreams and REM sleep. Psychiatr J Univ Ott. 1990;15:91–2.

    PubMed  Google Scholar 

  29. 29.

    Stickgold R, Malia A, Maguire D, Roddenberry D, O’Connor M. Replaying the game: hypnagogic images in normals and amnesics. Science. 2000;290:350–3.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Kusse C, Shaffii-LE Bourdiec A, Schrouff J, Matarazzo L, Maquet P. Experience-dependent induction of hypnagogic images during daytime naps: a combined behavioural and EEG study. J Sleep Res. 2012;21:10–20.

    PubMed  Article  Google Scholar 

  31. 31.

    Wamsley EJ, Perry K, Djonlagic I, Reaven LB, Stickgold R. Cognitive replay of visuomotor learning at sleep onset: temporal dynamics and relationship to task performance. Sleep. 2010;33:59–68.

    PubMed Central  PubMed  Google Scholar 

  32. 32.••

    Wamsley EJ, Tucker M, Payne JD, Benavides JA, Stickgold R. Dreaming of a learning task is associated with enhanced sleep-dependent memory consolidation. Curr Biol. 2010;20:850–5. This study demonstrates that participants who incorporate a pre-sleep spatial learning task into dreaming exhibit superior memory for the task following sleep.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  33. 33.

    Solomonova E, Paquette T, Stenstrom P, Nielsen T. Different 10-day temporal patterns of dreams about sleep laboratory and virtual reality maze experiences: associates with temporally patterned changes in dreamed locus of control. Sleep Med. 2011;12 Suppl 1:S124.

    Article  Google Scholar 

  34. 34.

    Wamsley EJ, Nguyen N, Tucker M, Olsen A, Stickgold R. EEG correlates of overnight memory consolidation in a virtual navigation task. Sleep. 2012;35(Abstr Suppl):A86

    Google Scholar 

  35. 35.

    Fosse MJ, Fosse R, Hobson JA, Stickgold RJ. Dreaming and episodic memory: a functional dissociation? J Cogn Neurosci. 2003;15:1–9.

    PubMed  Article  Google Scholar 

  36. 36.

    Nielsen TA, Powell RA. Longitudinal dream incorporation: preliminary evidence of cognitive processing with an infradian period. Sleep Res. 1988;17:112.

    Google Scholar 

  37. 37.

    Blagrove M, Fouquet NC, Henley-Einion JA, Pace-Schott EF, Davies AC, Neuschaffer JL, et al. Assessing the dream-lag effect for REM and NREM stage 2 dreams. PLoS One. 2011;6:e26708.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  38. 38.

    Baylor GW, Cavallero C. Memory sources associated with REM and NREM dream reports throughout the night: a new look at the data. Sleep. 2001;24:165–70.

    CAS  PubMed  Google Scholar 

  39. 39.

    Cavallero C, Foulkes D, Hollifield M, Terry R. Memory sources of REM and NREM dreams. Sleep. 1990;13:449–55.

    CAS  PubMed  Google Scholar 

  40. 40.

    Wagner U, Gais S, Haider H, Verleger R, Born J. Sleep inspires insight. Nature. 2004;427:352–5.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Ellenbogen JM, Hu PT, Payne JD, Titone D, Walker MP. Human relational memory requires time and sleep. Proc Natl Acad Sci U S A. 2007;104:7723.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  42. 42.

    Alger SE, Lau H, Fishbein W. Slow wave sleep during a daytime nap is necessary for protection from subsequent interference and long-term retention. Neurobiol Learn Mem. 2012;98:188–96.

    PubMed  Article  Google Scholar 

  43. 43.

    Lau H, Alger SE, Fishbein W. Relational memory: a daytime nap facilitates the abstraction of general concepts. PLoS One. 2011;6:e27139.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. 44.

    Euston DR, Tatsuno M, McNaughton BL. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science. 2007;318:1147–50.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Bendor D, Wilson MA. Biasing the content of hippocampal replay during sleep. Nat Neurosci. 2012;15:1439–44.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Ji D, Wilson MA. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci. 2006;10:100–7.

    PubMed  Article  Google Scholar 

  47. 47.

    Louie K, Wilson MA. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron. 2001;29:145–56.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Lee AK, Wilson MA. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron. 2002;36:1183–94.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Kudrimoti HS, Barnes CA, McNaughton BL. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci. 1999;19:4090–101.

    CAS  PubMed  Google Scholar 

  50. 50.

    Peigneux P, Laureys S, Fuchs S, Collette F, Perrin F, Reggers J, et al. Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron. 2004;44:535–45.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Laureys S, Peigneux P, Phillips C, Fuchs S, Degueldre C, Aerts J, et al. Experience-dependent changes in cerebral functional connectivity during human rapid eye movement sleep. Neuroscience. 2001;105:521–5.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science. 1994;265:676–9.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Verdone P. Temporal reference of manifest dream content. Percept Mot Skills. 1965;20:1253–68.

    PubMed  Article  Google Scholar 

  54. 54.

    O’Neill J, Pleydell-Bouverie B, Dupret D, Csicsvari J. Play it again: reactivation of waking experience and memory. Trends Neurosci. 2010;33:220–9.

    PubMed  Article  Google Scholar 

  55. 55.

    Vertes RP. Memory consolidation in sleep: dream or reality. Neuron. 2004;44:135–48.

    CAS  PubMed  Article  Google Scholar 

  56. 56.••

    Hartmann E. The dream always makes new connections: the dream is a creation, not a replay. Sleep Med Clin. 2010;5:241–8. In this theoretical paper, pioneering dream researcher Ernest Hartmann argues against a role for memory consolidation in dreaming. Several arguments raised here are addressed in the current paper.

    Article  Google Scholar 

  57. 57.

    Payne JD, Schacter DL, Propper RE, Huang L-W, Wamsley EJ, Tucker MA, et al. The role of sleep in false memory formation. Neurobiol Learn Mem. 2009;92:327–34.

    PubMed Central  PubMed  Article  Google Scholar 

  58. 58.

    Gómez RL, Bootzin RR, Nadel L. Naps promote abstraction in language-learning infants. Psychol Sci. 2006;17:670–4.

    PubMed  Article  Google Scholar 

  59. 59.••

    Tamminen J, Payne JD, Stickgold R, Wamsley EJ, Gaskell MG. Sleep spindle activity is associated with the integration of new memories and existing knowledge. J Neurosci. 2010;30:14356–60. This paper provides an excellent example of the role of sleep in integrating new information with established knowledge, rather than solely “strengthening” new memories in their original form.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  60. 60.

    Cai DJ, Mednick SA, Harrison EM, Kanady JC, Mednick SC. REM, not incubation, improves creativity by priming associative networks. Proc Natl Acad Sci U S A. 2009;106:10130.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  61. 61.

    McClelland JL, O’Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev. 1995;102:419–57

    Google Scholar 

  62. 62.••

    Lewis PA, Durrant SJ. Overlapping memory replay during sleep builds cognitive schemata. Trends Cogn Sci. 2011;15:343–51. In this recent theoretical article, Lewis and Durrant propose an elegant model of sleep-dependent memory consolidation in which the simultaneous reactivation of related memories leads to the extraction of generalized knowledge.

    PubMed  Article  Google Scholar 

  63. 63.••

    Gupta AS, van der Meer MAA, Touretzky DS, Redish AD. Hippocampal replay is not a simple function of experience. Neuron. 2010;65:695–705. This important study from the rodent memory reactivation literature demonstrates that the socalled “replay” of memory during sleep should not be conceptualized as a veridical reiteration of waking experience. In fact, “replayed” sequences can include novel shortcut trajectories through the learned environment never experienced during wakefulness.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Dement WC, Wolpert EA. The relation of eye movements, body motility, and external stimuli to dream content. J Exp Psychol. 1958;55:543–53.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Hobson JA, McCarley RW. The brain as a dream state generator: an activation-synthesis hypothesis of the dream process. Am J Psychiatry. 1977;134:1335–48.

    CAS  PubMed  Google Scholar 

  66. 66.

    Flanagan O. Dreaming souls: sleep, dreams and the evolution of the conscious mind. New York: Oxford University Press; 1999.

    Google Scholar 

  67. 67.

    Domhoff GW. The scientific study of dreams: neural networks, cognitive development, and content analysis. Washington: American Psychological Association; 2003.

    Google Scholar 

  68. 68.

    Crick F, Mitchison G. The function of dream sleep. Nature. 1983;304:111–4.

    CAS  PubMed  Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Erin J. Wamsley declares that the research described here was supported by National Institute of Mental Health grant R01-MH48832 (principal investigator Robert Stickgold), National Institutes of Health T32 training grant HL07901-10 to the Harvard Division of Sleep Medicine, and a KL2 Medical Research Investigator Training award (an appointed KL2 award) from Harvard Catalyst | The Harvard Clinical and Translational Science Center (National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health award 8KL2TR000168-05). She is also a principal investigator supported by an R21 grant from the National Institute of Mental Health (1R21MH098171-01A1) and has received grants from the BIAL Foundation. She has also received compensation for teaching a course at Harvard University.

Human and Animal Rights and Informed Consent

This article does not report original research findings. Some studies described here were performed in our laboratory at Beth Israel Deaconess Medical Center, where all human subjects signed informed consent prior to participation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erin J. Wamsley.

Additional information

This article is part of the Topical Collection on Sleep

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wamsley, E.J. Dreaming and Offline Memory Consolidation. Curr Neurol Neurosci Rep 14, 433 (2014). https://doi.org/10.1007/s11910-013-0433-5

Download citation

Keywords

  • Sleep
  • Dreaming
  • Rapid eye movement
  • Non-rapid eye movement
  • Memory consolidation
  • Offline processing
  • Memory reactivation
  • Replay
  • Consciousness