Skip to main content

Advertisement

Log in

Amyloid Imaging in Atypical Presentations of Alzheimer’s Disease

  • Behavior (HS Kirshner, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is thought to progress in a fairly stereotyped manner, with episodic memory loss being the first and most salient domain of impairment, reflecting the early disease in structures supporting this function. However, there is considerable heterogeneity in the relative involvement of different cognitive domains, and at the extreme are three syndromes associated with AD: (1) logopenic progressive aphasia, (2) posterior cortical atrophy, and (3) frontal variant of AD. As each of these syndromes is variably associated with non-AD dementia and clinically overlaps with other presentations more commonly associated with different causes of neurodegeneration (e.g., progressive nonfluent aphasia), the use of amyloid imaging for detection of the molecular pathologic features of AD is of significant clinical value. This article reviews several amyloid imaging studies of these populations which support autopsy case series and reveal a dissociation between the spatial distribution of amyloid plaques and clinical phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• McKhann G, Drachman D, Folstein M, Katzman R, Price D. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34:285–97.

    Article  Google Scholar 

  2. van der Flier WM, Pijnenburg YA, Fox NC, Scheltens P. Early-onset versus late-onset Alzheimer's disease: the case of the missing APOE ε4 allele. Lancet Neurol. 2011;10(3):280–8.

    Article  PubMed  Google Scholar 

  3. Snowden JS, Stopford CL, Julien CL, et al. Cognitive phenotypes in Alzheimer's disease and genetic risk. Cortex. 2007;43(7):835–45.

    Article  PubMed  Google Scholar 

  4. Wolk DA, Dickerson BC. Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional-executive network function in Alzheimer's disease. Proc Natl Acad Sci U S A. 2010;107(22):10256–61.

    Article  PubMed  CAS  Google Scholar 

  5. Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW. Neuropathologically defined subtypes of Alzheimer's disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 2011;10(9):785–96.

    Article  PubMed  Google Scholar 

  6. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):263–9.

    Article  PubMed  Google Scholar 

  7. Mesulam M, Wicklund A, Johnson N, et al. Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Ann Neurol. 2008;63(6):709–19.

    Article  PubMed  Google Scholar 

  8. • Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–14. This article describes recently proposed criteria for different variants of PPA, which are probabilistically associated with different pathologic causes.

    Article  PubMed  Google Scholar 

  9. Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement. 2012;8(1):1–13.

    Article  PubMed  Google Scholar 

  10. Jack Jr CR, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16.

    Article  PubMed  CAS  Google Scholar 

  11. Carrillo MC, Brashear HR, Logovinsky V, et al. Can we prevent Alzheimer's disease? Secondary "prevention" trials in Alzheimer's disease. Alzheimers Dement. 2013;9(2):123–31.e1.

    Article  PubMed  Google Scholar 

  12. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann Neurol. 2004;55(3):306–19.

    Article  PubMed  CAS  Google Scholar 

  13. Roe CM, Fagan AM, Grant EA, et al. Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later. Neurology. 2013;80(19):1784–91.

    Article  PubMed  CAS  Google Scholar 

  14. Wolk DA, Price JC, Saxton JA, et al. Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol. 2009;65(5):557–68.

    Article  PubMed  Google Scholar 

  15. Ikonomovic MD, Klunk WE, Abrahamson EE, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease. Brain. 2008;131(6):1630–45.

    Article  PubMed  Google Scholar 

  16. Rowe CC, Villemagne VL. Amyloid imaging with PET in early Alzheimer disease diagnosis. Med Clin N Am. 2013;97(3):377–98.

    Article  PubMed  Google Scholar 

  17. Wolk DA, Grachev ID, Buckley C, et al. Association between in vivo fluorine 18-labeled flutemetamol amyloid positron emission tomography imaging and in vivo cerebral cortical histopathology. Arch Neurol. 2011;68(11):1398–403.

    Article  PubMed  Google Scholar 

  18. • Clark CM, Schneider JA, Bedell BJ, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305(3):275–83. This is a landmark article demonstrating strong concordance of in vivo amyloid imaging of florbetapir PET with ex vivo amyloid plaque pathology. These data provide strong support for the validity of this imaging method.

    Article  PubMed  CAS  Google Scholar 

  19. Rowe CC, Ackerman U, Browne W, et al. Imaging of amyloid beta in Alzheimer's disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 2008;7(2):129–35.

    Article  PubMed  CAS  Google Scholar 

  20. Hodges JR, Patterson K, Oxbury S, Funnell E. Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy. Brain. 1992;115(6):1783–806.

    Article  PubMed  Google Scholar 

  21. Grossman M. The non-fluent/agrammatic variant of primary progressive aphasia. Lancet Neurol. 2012;11(6):545–55.

    Article  PubMed  Google Scholar 

  22. Josephs KA. Frontotemporal dementia and related disorders: deciphering the enigma. Ann Neurol. 2008;64(1):4–14.

    Article  PubMed  CAS  Google Scholar 

  23. Davies RR, Hodges JR, Kril JJ, Patterson K, Halliday GM. Xuereb JH The pathological basis of semantic dementia. Brain. 2005;128(9):1984–95.

    Article  PubMed  Google Scholar 

  24. Grossman M, Wood EM, Moore P, et al. TDP-43 pathologic lesions and clinical phenotype in frontotemporal lobar degeneration with ubiquitin-positive inclusions. Arch Neurol. 2007;64(10):1449–54.

    Article  PubMed  Google Scholar 

  25. • Grossman M. Primary progressive aphasia: clinicopathological correlations. Nat Rev Neurol. 2010;6(2):88–97. This is an excellent review of PPAs and a summary of the pathology data associated with each variant.

    Article  PubMed  Google Scholar 

  26. Knibb JA, Xuereb JH, Patterson K. Hodges JR Clinical and pathological characterization of progressive aphasia. Ann Neurol. 2006;59(1):156–65.

    Article  PubMed  Google Scholar 

  27. Gorno-Tempini ML, Dronkers NF, Rankin KP, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004;55(3):335–46.

    Article  PubMed  Google Scholar 

  28. Rabinovici GD, Jagust WJ, Furst AJ, et al. Aβ amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol. 2008;64(4):388–401.

    Article  PubMed  Google Scholar 

  29. Mesulam M, Wieneke C, Rogalski E, Cobia D, Thompson C, Weintraub S. Quantitative template for subtyping primary progressive aphasia. Arch Neurol. 2009;66(12):1545–51.

    Article  PubMed  Google Scholar 

  30. Leyton CE, Villemagne VL, Savage S, et al. Subtypes of progressive aphasia: application of the international consensus criteria and validation using beta-amyloid imaging. Brain. 2011;134(10):3030–43.

    Article  PubMed  Google Scholar 

  31. • Wolk DA, Price JC, Madeira C, et al. Amyloid imaging in dementias with atypical presentation. Alzheimers Dement. 2012;8(5):389–98. This is a case series demonstrating the potential clinical value of amyloid imaging in atypical, or difficult to diagnosis, dementia. These data support the clinical heterogeneity by which AD presents.

    Article  PubMed  Google Scholar 

  32. •• Lehmann M, Ghosh PM, Madison C, et al. Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer's disease. Brain. 2013;136(3):844–58. This is an excellent study describing dissociations between network-level abnormalities of glucose metabolism and PiB uptake in LPA (n = 12), PCA (n = 13), and early onset AD (n = 17). Although there was some suggestion of more focal PiB uptake in the visual association network of PCA patients, abnormalities in patterns of metabolism mapped much more clearly onto expected networks of impairment for these conditions than amyloid distribution measured by PiB PET.

    Article  PubMed  Google Scholar 

  33. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology. 1992;42:631–9.

    Article  PubMed  CAS  Google Scholar 

  34. Green J, Morris JC, Sandson J, McKeel Jr DW, Miller JW. Progressive aphasia: a precursor of global dementia? Neurology. 1990;40(3 Pt 1):423–9.

    Article  PubMed  CAS  Google Scholar 

  35. Galton CJ, Patterson K, Xuereb JH, Hodges JR. Atypical and typical presentations of Alzheimer's disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain. 2000;123(3):484–98.

    Article  PubMed  Google Scholar 

  36. Alladi S, Xuereb J, Bak T, et al. Focal cortical presentations of Alzheimer's disease. Brain. 2007;130(10):2636–45.

    Article  PubMed  CAS  Google Scholar 

  37. Cogan DG. Visual disturbances with focal progressive dementing disease. Am J Ophthalmol. 1985;100(1):68–72.

    PubMed  CAS  Google Scholar 

  38. Benson DF, Davis RJ, Snyder BD. Posterior cortical atrophy. Arch Neurol. 1988;45(7):789–93.

    Article  PubMed  CAS  Google Scholar 

  39. McMonagle P, Deering F, Berliner Y, Kertesz A. The cognitive profile of posterior cortical atrophy. Neurology. 2006;66(3):331–8.

    Article  PubMed  Google Scholar 

  40. • Crutch SJ, Schott JM, Rabinovici GD, et al. Shining a light on posterior cortical atrophy. Alzheimers Dement. 2013;9(4):463–5. This is an excellent review of the syndrome of PCA and unresolved clinical and research issues related to this diagnosis.

    Article  PubMed  Google Scholar 

  41. Nestor PJ, Caine D, Fryer TD, Clarke J, Hodges JR. The topography of metabolic deficits in posterior cortical atrophy (the visual variant of Alzheimer's disease) with FDG-PET. J Neurol Neurosurg Psychiatry. 2003;74(11):1521–9.

    Article  PubMed  CAS  Google Scholar 

  42. Tang-Wai DF, Graff-Radford NR, Boeve BF, et al. Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy. Neurology. 2004;63(7):1168–74.

    Article  PubMed  CAS  Google Scholar 

  43. Mendez MF, Ghajarania M, Perryman KM. Posterior cortical atrophy: clinical characteristics and differences compared to Alzheimer's disease. Dement Geriatr Cogn Disord. 2002;14(1):33–40.

    Article  PubMed  Google Scholar 

  44. Renner JA, Burns JM, Hou CE, McKeel Jr DW, Storandt M, Morris JC. Progressive posterior cortical dysfunction: a clinicopathologic series. Neurology. 2004;63(7):1175–80.

    Article  PubMed  CAS  Google Scholar 

  45. Hof PR, Bouras C, Constantinidis J, Morrison JH. Balint's syndrome in Alzheimer's disease: specific disruption of the occipito-parietal visual pathway. Brain Res. 1989;493(2):368–75.

    Article  PubMed  CAS  Google Scholar 

  46. Hof PR, Archin N, Osmand AP, et al. Posterior cortical atrophy in Alzheimer's disease: analysis of a new case and re-evaluation of a historical report. Acta Neuropathol. 1993;86(3):215–23.

    Article  PubMed  CAS  Google Scholar 

  47. Rosenbloom MH, Alkalay A, Agarwal N, et al. Distinct clinical and metabolic deficits in PCA and AD are not related to amyloid distribution. Neurology. 2011;76(21):1789–96.

    Article  PubMed  CAS  Google Scholar 

  48. Ng SY, Villemagne VL, Masters CL, Rowe CC. Evaluating atypical dementia syndromes using positron emission tomography with carbon 11 labeled Pittsburgh compound B. Arch Neurol. 2007;64(8):1140–4.

    Article  PubMed  Google Scholar 

  49. Tenovuo O, Kemppainen N, Aalto S, Nagren K, Rinne JO. Posterior cortical atrophy: a rare form of dementia with in vivo evidence of amyloid-beta accumulation. J Alzheimers Dis. 2008;15(3):351–5.

    PubMed  CAS  Google Scholar 

  50. Migliaccio R, Agosta F, Rascovsky K, et al. Clinical syndromes associated with posterior atrophy: early age at onset AD spectrum. Neurology. 2009;73(19):1571–8.

    Article  PubMed  CAS  Google Scholar 

  51. • de Souza LC, Corlier F, Habert MO, et al. Similar amyloid-beta burden in posterior cortical atrophy and Alzheimer's disease. Brain. 2011;134(7):2036–43. This is the largest case series of PCA patients (n = 9) who underwent amyloid imaging. This study did not reveal a different pattern of PiB uptake relative to that in typical AD.

    Article  PubMed  Google Scholar 

  52. Formaglio M, Costes N, Seguin J, et al. In vivo demonstration of amyloid burden in posterior cortical atrophy: a case series with PET and CSF findings. J Neurol. 2011;258(10):1841–51.

    Article  PubMed  Google Scholar 

  53. Gomperts SN, Locascio JJ, Marquie M, et al. Brain amyloid and cognition in Lewy body diseases. Mov Disord. 2012;27(8):965–73.

    Article  PubMed  Google Scholar 

  54. Binetti G, Magni E, Padovani A, Cappa SF, Bianchetti A, Trabucchi M. Executive dysfunction in early Alzheimer's disease. J Neurol Neurosurg Psychiatry. 1996;60(1):91–3.

    Article  PubMed  CAS  Google Scholar 

  55. Mega MS, Cummings JL, Fiorello T, Gornbein J. The spectrum of behavioral changes in Alzheimer's disease. Neurology. 1996;46(1):130–5.

    Article  PubMed  CAS  Google Scholar 

  56. Woodward M, Jacova C, Black SE, Kertesz A, Mackenzie IR, Feldman H. Differentiating the frontal variant of Alzheimer's disease. Int J Geriatr Psychiatry. 2010;25(7):732–8.

    Article  PubMed  Google Scholar 

  57. Johnson JK, Head E, Kim R, Starr A, Cotman CW. Clinical and pathological evidence for a frontal variant of Alzheimer disease. Arch Neurol. 1999;56(10):1233–9.

    Article  PubMed  CAS  Google Scholar 

  58. Forman MS, Farmer J, Johnson JK, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol. 2006;59(6):952–62.

    Article  PubMed  Google Scholar 

  59. Lehmann M, Madison CM, Ghosh PM, et al. Intrinsic connectivity networks in healthy subjects explain clinical variability in Alzheimer's disease. Proc Natl Acad Sci U S A. 2013;110(28):11606–11.

    Article  PubMed  CAS  Google Scholar 

  60. Pa J, Boxer A, Chao LL, et al. Clinical-neuroimaging characteristics of dysexecutive mild cognitive impairment. Ann Neurol. 2009;65(4):414–23.

    Article  PubMed  Google Scholar 

  61. Johnson JK, Vogt BA, Kim R, Cotman CW, Head E. Isolated executive impairment and associated frontal neuropathology. Dement Geriatr Cogn Disord. 2004;17(4):360–7.

    Article  PubMed  Google Scholar 

  62. Rabinovici GD, Furst AJ, O'Neil JP, et al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology. 2007;68(15):1205–12.

    Article  PubMed  CAS  Google Scholar 

  63. Lopez OL, Becker JT, Klunk W, et al. Research evaluation and diagnosis of probable Alzheimer's disease over the last two decades: I. Neurology. 2000;55(12):1854–62.

    Article  PubMed  CAS  Google Scholar 

  64. •• Johnson KA, Minoshima S, Bohnen NI, et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association. Alzheimers Dement. 2013;9(1):E1–16. This article describes a proposal for the appropriate use of amyloid PET in clinical practice. Of relevance to the current discussion, amyloid imaging was argued to be of particular value in atypical or early onset cases, such as those described here.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

David A. Wolk has been a consultant for GE Healthcare and Exponent, has received funding for two studies using a novel amyloid imaging tracer from GE Healthcare, and has received payment for development of educational presentations for Haymarket Medical Education.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Wolk.

Additional information

This article is part of the Topical Collection on Behavior

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolk, D.A. Amyloid Imaging in Atypical Presentations of Alzheimer’s Disease. Curr Neurol Neurosci Rep 13, 412 (2013). https://doi.org/10.1007/s11910-013-0412-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-013-0412-x

Keywords

Navigation