Cell-Based Reparative Therapies for Multiple Sclerosis

Abstract

The strong rationale for cell-based therapy in multiple sclerosis is based on the ability of stem and precursor cells of neural and mesenchymal origin to attenuate neuroinflammation, to facilitate endogenous repair processes, and to participate directly in remyelination, if directed towards a myelin-forming fate. However, there are still major gaps in knowledge regarding induction of repair in chronic multiple sclerosis lesions, and whether transplanted cells can overcome the multiple environmental inhibitory factors which underlie the failure of endogenous repair. Major challenges in clinical translation include the determination of the optimal cellular platform, the route of cell delivery, and candidate patients for treatment.

This is a preview of subscription content, log in to check access.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Politis M, Lindvall O. Clinical application of stem cell therapy in Parkinson's disease. BMC Med. 2012;10:1.

    PubMed  Article  Google Scholar 

  2. 2.

    Precious SV, Rosser AE. Producing striatal phenotypes for transplantation in Huntington's disease. Exp Biol Med (Maywood). 2012;237:343–51.

    Article  CAS  Google Scholar 

  3. 3.

    Benraiss A, Goldman SA. Cellular therapy and induced neuronal replacement for Huntington's disease. Neurotherapeutics. 2012;8:577–90.

    Article  Google Scholar 

  4. 4.

    •• Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell. 2013;12:252–64. With this study, showing extensive migration and myelination by human OPCs in a genetic dysmyelinating mouse model with long-term mouse survival, the stage is set for clinical translation of cell therapy in human dysmyelinating diseases.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Zhang SC, Duncan ID. Remyelination and restoration of axonal function by glial cell transplantation. Prog Brain Res. 2000;127:515–33.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Blakemore WF, Franklin RJ. Transplantation options for therapeutic central nervous system remyelination. Cell Transplant. 2000;9:289–94.

    PubMed  CAS  Google Scholar 

  7. 7.

    Einstein O, Karussis D, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Abramsky O, et al. Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci. 2003;24:1074–82.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature. 2005;436:266–71.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Einstein O, Fainstein N, Vaknin I, Mizrachi-Kol R, Reihartz E, Grigoriadis N, et al. Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression. Ann Neurol. 2007;61:209–18.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Pluchino S, Gritti A, Blezer E, Amadio S, Brambilla E, Borsellino G, et al. Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol. 2009;66:343–54.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Aharonowiz M, Einstein O, Fainstein N, Lassmann H, Reubinoff B, Ben-Hur T. Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis. PLoS One. 2008;3:e3145.

    PubMed  Article  Google Scholar 

  12. 12.

    Papadopoulos D, Pham-Dinh D, Reynolds R. Axon loss is responsible for chronic neurological deficit following inflammatory demyelination in the rat. Exp Neurol. 2006;197:373–85.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Pluchino S, Zanotti L, Brambilla E, Rovere-Querini P, Capobianco A, Alfaro-Cervello C, et al. Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS One. 2009;4:e5959.

    PubMed  Article  Google Scholar 

  14. 14.

    Fainstein N, Vaknin I, Einstein O, Zisman P, Sasson SZ, Baniyash M, et al. Neural precursor cells inhibit multiple inflammatory signals. Mol Cell Neurosci. 2008;39:335–41.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    • Fainstein N, Einstein O, Cohen ME, Brill L, Lavon I, Ben-Hur T. Time limited immunomodulatory functions of transplanted neural precursor cells. Glia. 2013;61:140–9. This is the first study to show limitations in therapeutic plasticity of transplanted stem/precursor cells which restrict their potential in clinical translation. Essentially, transplanted neural precursor cells lose their immunomodulatory properties within several weeks after transplantation.

    PubMed  Article  Google Scholar 

  16. 16.

    Einstein O, Ben-Hur T. The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol. 2008;65:452–6.

    PubMed  Article  Google Scholar 

  17. 17.

    De Feo D, Merlini A, Laterza C, Martino G. Neural stem cell transplantation in central nervous system disorders: from cell replacement to neuroprotection. Curr Opin Neurol. 2012;25:322–33.

    PubMed  Article  Google Scholar 

  18. 18.

    Ruff CA, Wilcox JT, Fehlings MG. Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp Neurol. 2012;235:78–90.

    PubMed  Article  Google Scholar 

  19. 19.

    Hattiangady B, Shuai B, Cai J, Coksaygan T, Rao MS, Shetty AK. Increased dentate neurogenesis after grafting of glial restricted progenitors or neural stem cells in the aging hippocampus. Stem Cells. 2007;25:2104–17.

    PubMed  Article  Google Scholar 

  20. 20.

    Ben-Shaanan TL, Ben-Hur T, Yanai J. Transplantation of neural progenitors enhances production of endogenous cells in the impaired brain. Mol Psychiatry. 2008;13:222–31.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Einstein O, Friedman-Levi Y, Grigoriadis N, Ben-Hur T. Transplanted neural precursors enhance host brain-derived myelin regeneration. J Neurosci. 2009;29:15694–702.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Chopp M, Li Y, Zhang J. Plasticity and remodeling of brain. J Neurol Sci. 2008;265:97–101.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Kassis I, Vaknin-Dembinsky A, Karussis D. Bone marrow mesenchymal stem cells: agents of immunomodulation and neuroprotection. Curr Stem Cell Res Ther. 2011;6:63–8.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Prineas JW, Barnard RO, Kwon EE, Sharer LR, Cho ES. Multiple sclerosis: remyelination of nascent lesions. Ann Neurol. 1993;33:137–51.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47:707–17.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Scolding N, Franklin R, Stevens S, Heldin CH, Compston A, Newcombe J. Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain. 1998;121:2221–8.

    PubMed  Article  Google Scholar 

  28. 28.

    Wolswijk G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci. 1998;18:601–9.

    PubMed  CAS  Google Scholar 

  29. 29.

    Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci. 2000;20:6404–12.

    PubMed  CAS  Google Scholar 

  30. 30.

    Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med. 2002;346:165–73.

    PubMed  Article  Google Scholar 

  31. 31.

    Wolswijk G. Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain. 2002;125:338–49.

    PubMed  Article  Google Scholar 

  32. 32.

    Lau LW, Keough MB, Haylock-Jacobs S, Cua R, Doring A, Sloka S, et al. Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann Neurol. 2012;72:419–32.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med. 2005;11:966–72.

    PubMed  CAS  Google Scholar 

  34. 34.

    • Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T. Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci U S A. 2010;107:11555–60. This work shows in vitro and in vivo data that provide the molecular basis by which (glial scar derived) hyaluronan inhibits remyelination.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci. 2005;8:745–51.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Charles P, Hernandez MP, Stankoff B, Aigrot MS, Colin C, Rougon G, et al. Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc Natl Acad Sci U S A. 2000;97:7585–90.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Charles P, Reynolds R, Seilhean D, Rougon G, Aigrot MS, Niezgoda A, et al. Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain. 2002;125:1972–9.

    PubMed  Article  Google Scholar 

  38. 38.

    Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med. 2007;13:1228–33.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Blakemore WF, Irvine KA. Endogenous or exogenous oligodendrocytes for remyelination. J Neurol Sci. 2008;265:43–6.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Merkler D, Ernsting T, Kerschensteiner M, Bruck W, Stadelmann C. A new focal EAE model of cortical demyelination: multiple sclerosis-like lesions with rapid resolution of inflammation and extensive remyelination. Brain. 2006;129:1972–83.

    PubMed  Article  Google Scholar 

  41. 41.

    Woodruff RH, Franklin RJ. Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: a comparative study. Glia. 1999;25:216–28.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Fainstein N, Cohen ME, Ben-Hur T. Time associated decline in neurotrophic properties of neural stem cell grafts render them dependent on brain region-specific environmental support. Neurobiol Dis. 2012;49C:41–8.

    PubMed  Google Scholar 

  43. 43.

    Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25:4694–705.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Kohama I, Lankford KL, Preiningerova J, White FA, Vollmer TL, Kocsis JD. Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord. J Neurosci. 2001;21:944–50.

    PubMed  CAS  Google Scholar 

  45. 45.

    Sasaki M, Lankford KL, Radtke C, Honmou O, Kocsis JD. Remyelination after olfactory ensheathing cell transplantation into diverse demyelinating environments. Exp Neurol. 2011;229:88–98.

    PubMed  Article  Google Scholar 

  46. 46.

    Zujovic V, Thibaud J, Bachelin C, Vidal M, Coulpier F, Charnay P, et al. Boundary cap cells are highly competitive for CNS remyelination: fast migration and efficient differentiation in PNS and CNS myelin-forming cells. Stem Cells. 2010;28:470–9.

    PubMed  CAS  Google Scholar 

  47. 47.

    • Bai L, Lennon DP, Caplan AI, DeChant A, Hecker J, Kranso J, et al. Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat Neurosci. 2012;15:862–70. This study provides the (although probably not the only) molecular basis for the trophic effects of MSCs in EAE. It highlights the important unsolved question of whether treatment with beneficial mediators might be sufficient instead of the need to deliver the entire cell factory for effective therapy.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Fisher-Shoval Y, Barhum Y, Sadan O, Yust-Katz S, Ben-Zur T, Lev N, et al. Transplantation of placenta-derived mesenchymal stem cells in the EAE mouse model of MS. J Mol Neurosci. 2012;48:176–84.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Liu R, Zhang Z, Lu Z, Borlongan C, Pan J, Chen J, et al. Human umbilical cord stem cells ameliorate experimental autoimmune encephalomyelitis by regulating immunoinflammation and remyelination. Stem Cells Dev. 2013;22:1053–62.

    PubMed  Article  Google Scholar 

  50. 50.

    Akiyama Y, Radtke C, Kocsis JD. Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci. 2002;22:6623–30.

    PubMed  CAS  Google Scholar 

  51. 51.

    Keilhoff G, Stang F, Goihl A, Wolf G, Fansa H. Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol. 2006;26:1235–52.

    PubMed  Article  Google Scholar 

  52. 52.

    Keirstead HS, Ben-Hur T, Rogister B, O'Leary MT, Dubois-Dalcq M, Blakemore WF. Polysialylated neural cell adhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation. J Neurosci. 1999;19:7529–36.

    PubMed  CAS  Google Scholar 

  53. 53.

    Ben-Hur T, Einstein O, Mizrachi-Kol R, Ben-Menachem O, Reinhartz E, Karussis D, et al. Transplanted multipotential neural precursor cells migrate into the inflamed white matter in response to experimental autoimmune encephalomyelitis. Glia. 2003;41:73–80.

    PubMed  Article  Google Scholar 

  54. 54.

    Ben-Hur T, van Heeswijk RB, Einstein O, Aharonowiz M, Xue R, Frost EE, et al. Serial in vivo MR tracking of magnetically labeled neural spheres transplanted in chronic EAE mice. Magn Reson Med. 2007;57:164–71.

    PubMed  Article  Google Scholar 

  55. 55.

    Muja N, Cohen ME, Zhang J, Kim H, Gilad AA, Walczak P, et al. Neural precursors exhibit distinctly different patterns of cell migration upon transplantation during either the acute or chronic phase of EAE: A serial MR imaging study. Magn Reson Med. 2011;65:1738–49.

    PubMed  Article  Google Scholar 

  56. 56.

    Sadan O, Shemesh N, Barzilay R, Bahat-Stromza M, Melamed E, Cohen Y, et al. Migration of neurotrophic factors-secreting mesenchymal stem cells toward a quinolinic acid lesion as viewed by magnetic resonance imaging. Stem Cells. 2008;26:2542–51.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Grigoriadis N, Lourbopoulos A, Lagoudaki R, Frischer JM, Polyzoidou E, Touloumi O, et al. Variable behavior and complications of autologous bone marrow mesenchymal stem cells transplanted in experimental autoimmune encephalomyelitis. Exp Neurol. 2011;230:78–89.

    PubMed  Article  Google Scholar 

  58. 58.

    Barhum Y, Gai-Castro S, Bahat-Stromza M, Barzilay R, Melamed E, Offen D. Intracerebroventricular transplantation of human mesenchymal stem cells induced to secrete neurotrophic factors attenuates clinical symptoms in a mouse model of multiple sclerosis. J Mol Neurosci. 2010;41:129–37.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Yang J, Jiang Z, Fitzgerald DC, Ma C, Yu S, Li H, et al. Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J Clin Invest. 2009;119:3678–91.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Sher F, Amor S, Gerritsen W, Baker D, Jackson SL, Boddeke E, et al. Intraventricularly injected Olig2-NSCs attenuate established relapsing-remitting EAE in mice. Cell Transplant. 2012;21:1883–97.

    PubMed  Article  Google Scholar 

  61. 61.

    Politi LS, Bacigaluppi M, Brambilla E, Cadioli M, Falini A, Comi G, et al. Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis. Stem Cells. 2007;25:2583–92.

    PubMed  Article  Google Scholar 

  62. 62.

    Borlongan CV, Glover LE, Tajiri N, Kaneko Y, Freeman TB. The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol. 2011;95:213–28.

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Payne NL, Sun G, McDonald C, Layton D, Moussa L, Emerson-Webber A, et al. Distinct immunomodulatory and migratory mechanisms underpin the therapeutic potential of human mesenchymal stem cells in autoimmune demyelination. Cell Transplant. 2013;22:1409–25.

    PubMed  Article  Google Scholar 

  64. 64.

    Bulte JW, Ben-Hur T, Miller BR, Mizrachi-Kol R, Einstein O, Reinhartz E, et al. MR microscopy of magnetically labeled neurospheres transplanted into the Lewis EAE rat brain. Magn Reson Med. 2003;50:201–5.

    PubMed  Article  Google Scholar 

  65. 65.

    Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130:1089–104.

    PubMed  Article  Google Scholar 

  66. 66.

    • Peters A, Pitcher LA, Sullivan JM, Mitsdoerffer M, Acton SE, Franz B, et al. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity. 2011;35:986–96. This study suggests the molecular mechanism of transition of MS pathogenesis from a systemic immunologically driven disease to a CNS-compartmentalized disease.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67:1187–94.

    PubMed  Article  Google Scholar 

  68. 68.

    Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol. 2012;11:150–6.

    PubMed  Article  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Nina Fainstein and Yossi Nishri declare that they have no conflict of interest.

Tamir Ben-Hur has received competitive research grants, as well as grants from private funding sources and donations for basic research. He also has patents regarding the use of human embryonic stem cells, and stock options in Regenera, Pharma and BrainWatch. He has received travel/accommodation expenses covered or reimbursed for invited lectures by academic institutions.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tamir Ben-Hur.

Additional information

This article is part of the Topical Collection on Demyelinating Disorders

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ben-Hur, T., Fainstein, N. & Nishri, Y. Cell-Based Reparative Therapies for Multiple Sclerosis. Curr Neurol Neurosci Rep 13, 397 (2013). https://doi.org/10.1007/s11910-013-0397-5

Download citation

Keywords

  • Stem cells
  • Remyelination
  • Immunomodulation
  • Regeneration
  • Cell-based reparative therapies
  • Multiple sclerosis