Skip to main content

Advertisement

Log in

Neuromuscular Disorders of Glycogen Metabolism

  • Nerve and Muscle (M Hirano and LH Weimer, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Disorders of glycogen metabolism are inborn errors of energy homeostasis affecting primarily skeletal muscle, heart, liver, and, less frequently, the central nervous system. These rare diseases are quite variable in age of onset, symptoms, morbidity, and mortality. This review provides an update on disorders of glycogen metabolism affecting skeletal muscle exclusively or predominantly. From a pathogenetic perspective, we classify these diseases as primary, if the defective enzyme is directly involved in glycogen/glucose metabolism, or secondary, if the genetic mutation affects proteins which indirectly regulate glycogen or glucose processing. In addition to summarizing the most recent clinical reports in this field, we briefly describe animal models of human glycogen disorders. These experimental models are greatly improving the understanding of the pathogenetic mechanisms underlying the muscle degenerative process associated to these diseases and provide in vivo platforms to test new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently have been heighted as: • Of important •• Of major important

  1. Roach PJ. Glycogen and its metabolism. Curr Mol Med. 2002;2:101–20.

    Article  PubMed  CAS  Google Scholar 

  2. DiMauro S, Spiegel R. Progress and problems in muscle glycogenoses. Acta Myol. 2011;30:96–102.

    PubMed  CAS  Google Scholar 

  3. DiMauro S, Garone C. Metabolic disorders of fetal life: glycogenoses and mitochondrial defects of the mitochondrial respiratory chain. Semin Fetal Neonatal Med. 2011;16:181–9.

    Article  PubMed  CAS  Google Scholar 

  4. Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS. Glycogen and its metabolism: some new developments and old themes. Biochem J. 2012;441:763–87.

    Article  PubMed  CAS  Google Scholar 

  5. van der Ploeg AT, Reuser AJ. Pompe's disease. Lancet. 2008;372:1342–53.

    Article  PubMed  Google Scholar 

  6. Moslemi AR, Lindberg C, Nilsson J, et al. Glycogenin-1 deficiency and inactivated priming of glycogen synthesis. N Engl J Med. 2010;362:1203–10.

    Article  PubMed  CAS  Google Scholar 

  7. Nilsson J, Halim A, Moslemi AR, et al. Molecular pathogenesis of a new glycogenosis caused by a glycogenin-1 mutation. Biochim Biophys Acta. 2012;1822:493–9.

    Article  PubMed  CAS  Google Scholar 

  8. Kollberg G, Tulinius M, Gilljam T, et al. Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N Engl J Med. 2007;357:1507–14.

    Article  PubMed  CAS  Google Scholar 

  9. Pederson BA, Chen H, Schroeder JM, et al. Abnormal cardiac development in the absence of heart glycogen. Mol Cell Biol. 2004;24:7179–87.

    Article  PubMed  CAS  Google Scholar 

  10. Moses SW, Parvari R. The variable presentations of glycogen storage disease type IV: a review of clinical, enzymatic and molecular studies. Curr Mol Med. 2002;2:177–88.

    Article  PubMed  CAS  Google Scholar 

  11. Bruno C, Cassandrini D, Assereto S, et al. Neuromuscular forms of glycogen branching enzyme deficiency. Acta Myol. 2007;26:75–8.

    PubMed  CAS  Google Scholar 

  12. Magoulas PL, El-Hattab AW, Roy A, et al. Diffuse reticuloendothelial system involvement in type IV glycogen storage disease with a novel GBE1 mutation: a case report and review. Hum Pathol. 2012;43:943–51.

    Article  PubMed  CAS  Google Scholar 

  13. Bruno C, van Diggelen OP, Cassandrini D, et al. Clinical and genetic heterogeneity of branching enzyme deficiency (glycogenosis type IV). Neurology. 2004;63:1053–8.

    Article  PubMed  CAS  Google Scholar 

  14. Reusche E, Aksu F, Goebel HH, et al. A mild juvenile variant of type IV glycogenosis. Brain Dev. 1992;14:36–43.

    Article  PubMed  CAS  Google Scholar 

  15. Servidei S, Riepe RE, Langston C, et al. Severe cardiopathy in branching enzyme deficiency. J Pediatr. 1987;111:51–516.

    Article  PubMed  CAS  Google Scholar 

  16. Goebel HH, Shin YS, Gullotta F, et al. Adult polyglucosan body myopathy. J Neuropathol Exp Neurol. 1992;51:24–35.

    Article  PubMed  CAS  Google Scholar 

  17. Lossos A, Barash V, Soffer D, et al. Hereditary branching enzyme dysfunction in adult polyglucosan body disease: a possible metabolic cause in two patients. Ann Neurol. 1991;30:655–62.

    Article  PubMed  CAS  Google Scholar 

  18. Bruno C, Servidei S, Shanske S, et al. Glycogen branching enzyme deficiency in adult polyglucosan body disease. Ann Neurol. 1993;33:88–93.

    Article  PubMed  CAS  Google Scholar 

  19. Taratuto AL, Akman HO, Saccoliti M, Riudavets M, Arakaki N, Mesa L, Sevlever G, Goebel H, DiMauro S. Branching enzyme deficiency/glycogenosis storage disease type IV presenting as a severe congenital hypotonia: muscle biopsy and autopsy findings, biochemical and molecular genetic studies. Neuromuscul Disord. 2010;20:783–90.

    Article  PubMed  CAS  Google Scholar 

  20. Fyfe JC, Giger U, Van Winkle TJ, et al. Glycogen storage disease type IV: inherited deficiency of branching enzyme activity in cats. Pediatr Res. 1992;32:719–25.

    Article  PubMed  CAS  Google Scholar 

  21. Ward TL, Valberg SJ, Adelson DL, et al. Glycogen branching enzyme (GBE1) mutation causing equine glycogen storage disease IV. Mamm Genome. 2004;15:570–7.

    Article  PubMed  CAS  Google Scholar 

  22. Lee YC, Chang CJ, Bali D, et al. Glycogen-branching enzyme deficiency leads to abnormal cardiac development: novel insights into glycogen storage disease IV. Hum Mol Genet. 2011;20:455–65.

    Article  PubMed  CAS  Google Scholar 

  23. Akman HO, Sheiko T, Tay SK, et al. Generation of a novel mouse model that recapitulates early and adult onset glycogenosis type IV. Hum Mol Genet. 2011;20:4430–9.

    Article  PubMed  CAS  Google Scholar 

  24. • Goldstein J, Austin S, Kishnani P, Bali D. Phosphorylase kinase deficiency. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews™ [Internet]. Seattle: University of Washington; 1993–2011 May 31. This is a comprehensive review of physiopathological and clinical features of glycogenosis type VIII.

  25. Wehner M, Clemens PR, Engel AG, Kilimann MW. Human muscle glycogenosis due to phosphorylase kinase deficiency associated with a nonsense mutation in the muscle isoform of the alpha subunit. Hum Mol Genet. 1994;3:1983–7.

    Article  PubMed  CAS  Google Scholar 

  26. Bruno C, Manfredi G, Andreu AL, et al. A splice junction mutation in the alpha(M) gene of phosphorylase kinase in a patient with myopathy. Biochem Biophys Res Commun. 1998;249:648–51.

    Article  PubMed  CAS  Google Scholar 

  27. Burwinkel B, Hu B, Schroers A, et al. Muscle glycogenosis with low phosphorylase kinase activity: mutations in PHKA1, PHKG1 or six other candidate genes explain only a minority of cases. Eur J Hum Genet. 2003;11:516–26.

    Article  PubMed  CAS  Google Scholar 

  28. Wuyts W, Reyniers E, Ceuterick C, Storm K, de Barsy T, Martin JJ. Myopathy and phosphorylase kinase deficiency caused by a mutation in the PHKA1 gene. Am J Med Genet A. 2005;133:82–4.

    Google Scholar 

  29. Echaniz-Laguna A, Akman HO, et al. Muscle phosphorylase b kinase deficiency revisited. Neuromuscul Disord. 2010;20:125–7.

    Article  PubMed  Google Scholar 

  30. Ørngreen MC, Schelhaas HJ, Jeppesen TD, et al. Is muscle glycogenolysis impaired in X-linked phosphorylase b kinase deficiency? Neurology. 2008;70:1876–82.

    Article  PubMed  Google Scholar 

  31. Preisler N, Orngreen MC, Echaniz-Laguna A, et al. Muscle phosphorylase kinase deficiency: a neutral metabolic variant or a disease? Neurology. 2012;78:265–8.

    Article  PubMed  CAS  Google Scholar 

  32. Arenas J, Martín MA, Andreu AL. Glycogen storage disease type V. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews™ [Internet]. Seattle: University of Washington; 1993–2006 Apr 19 (updated 12 May 2009).

  33. Lucia A, Ruiz JR, Santalla A, et al. Genotypic and phenotypic features of McArdle disease: insights from the Spanish national registry. J Neurol Neurosurg Psychiatry. 2012;83:322–8.

    Article  PubMed  Google Scholar 

  34. Nogales-Gadea G, Rubio JC, Fernandez-Cadenas I, et al. Expression of the muscle glycogen phosphorylase gene in patients with McArdle disease: the role of nonsense-mediated mRNA decay. Hum Mutat. 2008;29:277–83.

    Article  PubMed  CAS  Google Scholar 

  35. Bruno C, Cassandrini D, Martinuzzi A, et al. McArdle disease: the mutation spectrum of PYGM in a large Italian cohort. Hum Mutat. 2006;27:718.

    Article  PubMed  Google Scholar 

  36. Vissing J, Duno M, Schwartz M, Haller RG. Splice mutations preserve myophosphorylase activity that ameliorates the phenotype in McArdle disease. Brain. 2009;132:1545–52.

    Article  PubMed  Google Scholar 

  37. Quinlivan R, Buckley J, James M, et al. McArdle disease: a clinical review. J Neurol Neurosurg Psychiatry. 2010;81:1182–8.

    Article  PubMed  CAS  Google Scholar 

  38. Haller RG, Vissing J. Spontaneous “second wind” and glucose-induced second “second wind” in McArdle disease: oxidative mechanisms. Arch Neurol. 2002;59:1395–402.

    Article  PubMed  Google Scholar 

  39. • Lucia A, Nogales-Gadea G, Perez M, et al. McArdle disease: what do neurologists need to know? Nat Clin Pract Neurol. 2008;4:568–77. This is a comprehensive review of clinical features and management aspects of glycogenosis type V.

    Article  PubMed  Google Scholar 

  40. Angelos S, Valberg SJ, Smith BP, et al. Myophosphorylase deficiency associated with rhabdomyolysis and exercise intolerance in 6 related charolais cattle. Muscle Nerve. 1995;18:736–40.

    Article  PubMed  CAS  Google Scholar 

  41. Tan P, Allen JG, Wilton SD, et al. A splice-site mutation causing ovine McArdle's disease. Neuromuscul Disord. 1997;7:336–42.

    Article  PubMed  CAS  Google Scholar 

  42. Nogales-Gadea G, Pinós T, Lucia A, et al. Knock-in mice for the R50X mutation in the PYGM gene present with McArdle disease. Brain. 2012;135:2048–57.

    Article  PubMed  Google Scholar 

  43. • Kishnani PS, Austin SL, Arn P, et al. Glycogen storage disease type III diagnosis and management guidelines. Genet Med. 2010;12:446–63. This is a comprehensive review of physiopathological and clinical features of glycogenosis type III.

    Article  PubMed  CAS  Google Scholar 

  44. Goldstein JL, Austin SL, Boyette K, et al. Molecular analysis of the AGL gene: identification of 25 novel mutations and evidence of genetic heterogeneity in patients with glycogen storage disease type III. Genet Med. 2010;12:424–30.

    Article  PubMed  CAS  Google Scholar 

  45. Vertilus SM, Austin SL, Foster KS, et al. Echocardiographic manifestations of glycogen storage disease III: increase in wall thickness and left ventricular mass over time. Genet Med. 2010;12:413–23.

    Article  PubMed  Google Scholar 

  46. Gregory BL, Shelton GD, Bali DS, Chen YT, Fyfe JC. Glycogen storage disease type IIIa in curly-coated retrievers. J Vet Intern Med. 2007;21:40–6.

    Article  PubMed  Google Scholar 

  47. Yi H, Thurberg BL, Curtis S, et al. Characterization of a canine model of glycogen storage disease type IIIa. Dis Model Mech. 2012;5:804–11.

    Google Scholar 

  48. Nakajima H, Raben N, Hamaguchi T, Yamasaki T. Phosphofructokinase deficiency; past, present and future. Curr Mol Med. 2002;2:197–212.

    Article  PubMed  CAS  Google Scholar 

  49. Toscano A, Musumeci O. Tarui disease and distal glycogenoses: clinical and genetic update. Acta Myol. 2007;26:105–7.

    PubMed  CAS  Google Scholar 

  50. Haller RG, Vissing J. No spontaneous second wind in muscle phosphofructokinase deficiency. Neurology. 2004;62(1):82–6.

    Article  PubMed  CAS  Google Scholar 

  51. Musumeci O, Bruno C, Mongini T, et al. Clinical features and new molecular findings in muscle phosphofructokinase deficiency (GSD type VII). Neuromuscul Disord. 2012;22:325–30.

    Article  PubMed  Google Scholar 

  52. García M, Pujol A, Ruzo A, et al. Phosphofructo-1-kinase deficiency leads to a severe cardiac and hematological disorder in addition to skeletal muscle glycogenosis. PLoS Genet. 2009;5:e1000615.

    Article  PubMed  Google Scholar 

  53. Beutler E. PGK deficiency. Br J Haematol. 2007;136:3–11.

    Article  PubMed  CAS  Google Scholar 

  54. Spiegel R, Area Gomez E, Akman HO, et al. Myopathic form of phosphoglycerate kinase (PGK) deficiency: a new case and pathogenic considerations. Neuromusc Disord. 2009;19:207–11.

    Article  PubMed  Google Scholar 

  55. Sotiriou E, Greene P, Krishna S, et al. Myopathy and parkinsonism in phosphoglycerate kinase deficiency. Muscle Nerve. 2010;41:707–10.

    PubMed  CAS  Google Scholar 

  56. Naini A, Toscano A, Musumeci O, et al. Muscle phosphoglycerate mutase deficiency revisited. Arch Neurol. 2009;66:394–8.

    Article  PubMed  Google Scholar 

  57. Kanno T, Maekawa M. Lactate dehydrogenase M-subunit deficiencies: clinical features, metabolic background, and genetic heterogeneities. Muscle Nerve. 1995;3:S54–60.

    Article  PubMed  CAS  Google Scholar 

  58. Kreuder J, Borkhardt A, Repp R, et al. Inherited metabolic myopathy and hemolysis due to a mutation in aldolase a. N Engl J Med. 1996;334:1100–4.

    Article  PubMed  CAS  Google Scholar 

  59. Comi GP, Fortunato F, Lucchiari S, et al. Beta-enolase deficiency, a new metabolic myopathy of distal glycolysis. Ann Neurol. 2001;50:202–7.

    Article  PubMed  CAS  Google Scholar 

  60. •• Stojkovic T, Vissing J, Petit F, et al. Muscle glycogenosis due to phosphoglucomutase 1 deficiency. N Engl J Med. 2009;361:425–7. The is the first description of this new glycogen disorder.

    Article  PubMed  CAS  Google Scholar 

  61. Delgado-Escueta AV. Advances in Lafora progressive myoclonus epilepsy. Curr Neurol Neurosci Rep. 2007;7:428–33.

    Article  PubMed  CAS  Google Scholar 

  62. Minassian BA, Lee JR, Herbrick JA, et al. Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet. 1998;20:171–4.

    Article  PubMed  CAS  Google Scholar 

  63. Vilchez D, Ros S, Cifuentes D, et al. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci. 2007;10:1407–13.

    Article  PubMed  CAS  Google Scholar 

  64. DePaoli-Roach AA, Tagliabracci VS, Segvich DM, et al. Genetic depletion of the malin E3 ubiquitin ligase in mice leads to Lafora bodies and the accumulation of insoluble laforin. J Biol Chem. 2010;285:25372–81.

    Article  PubMed  CAS  Google Scholar 

  65. • Turnbull J, Wang P, Girard JM, et al. Glycogen hyperphosphorylation underlies Lafora body formation. Ann Neurol. 2010;68:925–33. This article defines the relevance of glycogen phosphate accumulation in a mouse model of malin deficiency.

    Article  PubMed  CAS  Google Scholar 

  66. Ganesh S, Delgado-Escueta AV, Sakamoto T, et al. Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Hum Mol Genet. 2002;11:1251–62.

    Article  PubMed  CAS  Google Scholar 

  67. • Tagliabracci VS, Turnbull J, Wang W, et al. Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo. Proc Natl Acad Sci USA. 2007;104:19262–6. This article defines the relevance of glycogen phosphate accumulation in a mouse model of laforin deficiency.

    Article  PubMed  CAS  Google Scholar 

  68. Puri R, Ganesh S. Autophagy defects in Lafora disease: cause or consequence? Autophagy. 2012;8:289–90.

    Article  PubMed  CAS  Google Scholar 

  69. Delgado-Escueta AV. Lafora progressive myoclonus epilepsy: glycogen storage disease vs neurodegenerative disease. Neurology. 2012;79:21–2.

    Article  PubMed  Google Scholar 

  70. Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25:1895–908.

    Article  PubMed  CAS  Google Scholar 

  71. Scott JW, Norman DG, Hawley SA, Kontogiannis L, Hardie DG. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J Mol Biol. 2002;317:309–23.

    Article  PubMed  CAS  Google Scholar 

  72. Arad M, Benson DW, Perez-Atayde AR, McKenna WJ, et al. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest. 2002;109:357–62.

    PubMed  CAS  Google Scholar 

  73. Akman HO, Sampayo JN, Ross FA, et al. Fatal infantile cardiac glycogenosis with phosphorylase kinase deficiency and a mutation in the gamma2-subunit of AMP-activated protein kinase. Pediatr Res. 2007;62:499–504.

    Article  PubMed  CAS  Google Scholar 

  74. Arad M, Moskowitz IP, Patel VV, et al. Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-white syndrome in glycogen storage cardiomyopathy. Circulation. 2003;107:2850–6.

    Article  PubMed  CAS  Google Scholar 

  75. Costford SR, Kavaslar N, Ahituv N, et al. Gain-of-function R225W mutation in human AMPKgamma(3) causing increased glycogen and decreased triglyceride in skeletal muscle. PLoS One. 2007;2:e903.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Bruno.

Additional information

This article is part of the Topical Collection on Nerve and Muscle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gazzerro, E., Andreu, A.L. & Bruno, C. Neuromuscular Disorders of Glycogen Metabolism. Curr Neurol Neurosci Rep 13, 333 (2013). https://doi.org/10.1007/s11910-012-0333-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-012-0333-0

Keywords

Navigation