Differential Diagnosis of Chorea

Abstract

Chorea is a common movement disorder that can be caused by a large variety of structural, neurochemical (including pharmacologic), or metabolic disturbances to basal ganglia function, indicating the vulnerability of this brain region. The diagnosis is rarely indicated by the simple phenotypic appearance of chorea, and can be challenging, with many patients remaining undiagnosed. Clues to diagnosis may be found in the patient’s family or medical history, on neurologic examination, or upon laboratory testing and neuroimaging. Increasingly, advances in genetic medicine are identifying new disorders and expanding the phenotype of recognized conditions. Although most therapies at present are supportive, correct diagnosis is essential for appropriate genetic counseling, and ultimately, for future molecular therapies.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.

    Kenney C, Powell S, Jankovic J. Autopsy-proven Huntington’s disease with 29 trinucleotide repeats. Mov Disord. 2007;22:127–30.

    PubMed  Article  Google Scholar 

  2. 2.

    Rosenblatt A, Liang KY, Zhou H, et al. The association of CAG repeat length with clinical progression in Huntington disease. Neurology. 2006;66:1016–20.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Wexler NS, Lorimer J, Porter J, et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci U S A. 2004;101:3498–503.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Aziz NA, Jurgens CK, Landwehrmeyer GB, et al. Normal and mutant HTT interact to affect clinical severity and progression in Huntington disease. Neurology. 2009;73:1280–5.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Holmes SE, O'Hearn E, Rosenblatt A, et al. A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat Genet. 2001;29:377–8.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Stevanin G, Fujigasaki H, Lebre AS, et al. Huntington's disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain. 2003;126:1599–603.

    PubMed  Article  Google Scholar 

  7. 7.

    Margolis RL, Holmes SE, Rosenblatt A, et al. Huntington’s Disease-like 2 (HDL2) in North America and Japan. Ann Neurol. 2004;56:670–4.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Walker RH, Jankovic J, O'Hearn E, Margolis RL. Phenotypic features of huntington disease-like 2. Mov Disord. 2003;18:1527–30.

    PubMed  Article  Google Scholar 

  9. 9.

    Walker RH, Rasmussen A, Rudnicki D, et al. Huntington’s Disease-like 2 can present as chorea-acanthocytosis. Neurology. 2003;61:1002–4.

    PubMed  CAS  Google Scholar 

  10. 10.

    • Durr A: Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol 2010, 9: 885–894. This is a nice summary of clinical and genetic features autosomal-dominant ataxias.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Namekawa M, Takiyama Y, Ando Y, et al. Choreiform movements in spinocerebellar ataxia type 1. J Neurol Sci. 2001;187:103–6.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Geschwind DH, Perlman S, Figueroa CP, et al. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet. 1997;60:842–50.

    PubMed  CAS  Google Scholar 

  13. 13.

    Rottnek M, Riggio S, Byne W, et al. Schizophrenia in a patient with spinocerebellar ataxia 2: coincidence of two disorders or a neurodegenerative disease presenting with psychosis? Am J Psychiatry. 2008;165:964–7.

    PubMed  Article  Google Scholar 

  14. 14.

    Lee WW, Kim SY, Kim JY, et al. Extrapyramidal signs are a common feature of spinocerebellar ataxia type 17. Neurology. 2009;73:1708–9.

    PubMed  Article  Google Scholar 

  15. 15.

    Le Ber I, Camuzat A, Castelnovo G, et al. Prevalence of dentatorubral-pallidoluysian atrophy in a large series of white patients with cerebellar ataxia. Arch Neurol. 2003;60:1097–9.

    PubMed  Article  Google Scholar 

  16. 16.

    Wardle M, Majounie E, Williams NM, et al. Dentatorubral pallidoluysian atrophy in South Wales. J Neurol Neurosurg Psychiatry. 2008;79:804–7.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Burke JR, Wingfield MS, Lewis KE, et al. The Haw River Syndrome: dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nat Genet. 1994;7:521–4.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Mahajnah M, Inbar D, Steinmetz A, et al. Benign hereditary chorea: clinical, neuroimaging, and genetic findings. J Child Neurol. 2007;22:1231–4.

    PubMed  Article  Google Scholar 

  19. 19.

    Bauer P, Kreuz FR, Burk K, et al. Mutations in TITF1 are not relevant to sporadic and familial chorea of unknown cause. Mov Disord. 2006;21:1734–7.

    PubMed  Article  Google Scholar 

  20. 20.

    Asmus F, Horber V, Pohlenz J, et al. A novel TITF-1 mutation causes benign hereditary chorea with response to levodopa. Neurology. 2005;64:1952–4.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Krude H, Schutz B, Biebermann H, et al. Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. J Clin Invest. 2002;109:475–80.

    PubMed  CAS  Google Scholar 

  22. 22.

    Curtis AR, Fey C, Morris CM, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet. 2001;28:350–4.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Crompton DE, Chinnery PF, Bates D, et al. Spectrum of movement disorders in neuroferritinopathy. Mov Disord. 2004;20:95–9.

    Article  Google Scholar 

  24. 24.

    Kubota A, Hida A, Ichikawa Y, et al. A novel ferritin light chain gene mutation in a Japanese family with neuroferritinopathy: description of clinical features and implications for genotype-phenotype correlations. Mov Disord. 2009;24:441–5.

    PubMed  Article  Google Scholar 

  25. 25.

    Suls A, Dedeken P, Goffin K, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain. 2008;131:1831–44.

    PubMed  Article  Google Scholar 

  26. 26.

    • Leen WG, Klepper J, Verbeek MM, et al.: Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain 2010, 133: 655–670. This is a recent update on this treatable disorder.

    PubMed  Article  Google Scholar 

  27. 27.

    Geschwind DH, Loginov M, Stern JM. Identification of a locus on chromosome 14q for idiopathic basal ganglia calcification (Fahr disease). Am J Hum Genet. 1999;65:764–72.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Oliveira JR, Spiteri E, Sobrido MJ, et al. Genetic heterogeneity in familial idiopathic basal ganglia calcification (Fahr disease). Neurology. 2004;63:2165–7.

    PubMed  CAS  Google Scholar 

  29. 29.

    Wszolek ZK, Baba Y, Mackenzie IR, et al. Autosomal dominant dystonia-plus with cerebral calcifications. Neurology. 2006;67:620–5.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Younes-Mhenni S, Thobois S, Streichenberger N, et al. Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (Melas) associated with a Fahr disease and cerebellar calcifications. Rev Med Interne. 2002;23:1027–9.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Kovacs GG, Murrell JR, Horvath S, et al. TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov Disord. 2009;24:1843–7.

    PubMed  Article  Google Scholar 

  32. 32.

    Gamez J, Corbera-Bellalta M, Mila M, et al. Chorea-ballism associated with familial amyotrophic lateral sclerosis. A clinical, genetic, and neuropathological study. Mov Disord. 2008;23:434–8.

    PubMed  Article  Google Scholar 

  33. 33.

    Pradat PF, Salachas F, Lacomblez L, et al. Association of chorea and motor neuron disease. Mov Disord. 2002;17:419–20.

    PubMed  Article  Google Scholar 

  34. 34.

    Nielsen TR, Bruhn P, Nielsen JE, Hjermind LE. Behavioral variant of frontotemporal dementia mimicking Huntington's disease. Int Psychogeriatr. 2010;22:674–7.

    PubMed  Article  Google Scholar 

  35. 35.

    Machado A, Fen CH, Mitiko DM, et al. Neurological manifestations in Wilson's disease: report of 119 cases. Mov Disord. 2006;21:2192–6.

    PubMed  Article  Google Scholar 

  36. 36.

    Zhu D, Burke C, Leslie A, Nicholson GA. Friedreich's ataxia with chorea and myoclonus caused by a compound heterozygosity for a novel deletion and the trinucleotide GAA expansion. Mov Disord. 2002;17:585–9.

    PubMed  Article  Google Scholar 

  37. 37.

    Spacey SD, Szczygielski BI, Young SP, et al. Malaysian siblings with friedreich ataxia and chorea: a novel deletion in the frataxin gene. Can J Neurol Sci. 2004;31:383–6.

    PubMed  Google Scholar 

  38. 38.

    • Verhagen MMM, Abdo WF, Willemsen MAAP, et al.: Clinical spectrum of ataxia-telangiectasia in adulthood. Neurology 2009, 73: 430–437. This article reports on features of this disorder in previously misdiagnosed adults.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Rampoldi L, Danek A, Monaco AP. Clinical features and molecular bases of neuroacanthocytosis. J Mol Med. 2002;80:475–91.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Storch A, Kornhass M, Schwarz J. Testing for acanthocytosis—a prospective reader-blinded study in movement disorder patients. J Neurol. 2005;252:84–90.

    PubMed  Article  Google Scholar 

  41. 41.

    Rampoldi L, Dobson-Stone C, Rubio JP, et al. A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat Genet. 2001;28:119–20.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Dobson-Stone C, Velayos-Baeza A, Filippone LA, et al. Chorein detection for the diagnosis of chorea-acanthocytosis. Ann Neurol. 2004;56:299–302.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Velayos-Baeza A, Holinski-Feder E, Nietzel B, et al.: Chorea-acanthocytosis genotype in Critchley's original Kentucky neuroacanthocytosis kindred. Arch Neurol. in press.

  44. 44.

    Mubaidin A, Roberts E, Hampshire D, et al. Karak syndrome: a novel degenerative disorder of the basal ganglia and cerebellum. J Med Genet. 2003;40:543–6.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Miyajima H. Aceruloplasminemia, an iron metabolic disorder. Neuropathology. 2003;23:345–50.

    PubMed  Article  Google Scholar 

  46. 46.

    McNeill A, Pandolfo M, Kuhn J, et al. The neurological presentation of ceruloplasmin gene mutations. Eur Neurol. 2008;60:200–5.

    PubMed  Article  Google Scholar 

  47. 47.

    Friedman JR, Thiele EA, Wang D, et al. Atypical GLUT1 deficiency with prominent movement disorder responsive to ketogenic diet. Mov Disord. 2006;21:241–5.

    PubMed  Article  Google Scholar 

  48. 48.

    Sethi KD, Ray R, Roesel RA, et al. Adult-onset chorea and dementia with propionic acidemia. Neurology. 1989;39:1343–5.

    PubMed  CAS  Google Scholar 

  49. 49.

    Gascon GG, Ozand PT, Brismar J. Movement disorders in childhood organic acidurias. Clinical, neuroimaging, and biochemical correlations. Brain Dev. 1994;16(Suppl):94–103.

    PubMed  Article  Google Scholar 

  50. 50.

    Hall DA, Ringel SP. Adult nonketotic hyperglycinemia (NKH) crisis presenting as severe chorea and encephalopathy. Mov Disord. 2004;19:485–6.

    PubMed  Article  Google Scholar 

  51. 51.

    Morrison PF, Sankar R, Shields WD. Valproate-induced chorea and encephalopathy in atypical nonketotic hyperglycinemia. Pediatr Neurol. 2006;35:356–8.

    PubMed  Article  Google Scholar 

  52. 52.

    Mellick G, Price L, Boyle R. Late-onset presentation of pyruvate dehydrogenase deficiency. Mov Disord. 2004;19:727–9.

    PubMed  Article  Google Scholar 

  53. 53.

    Brown RM, Head RA, Morris AA, et al. Pyruvate dehydrogenase E3 binding protein (protein X) deficiency. Dev Med Child Neurol. 2006;48:756–60.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Shulman LM, Lang AE, Jankovic J, et al. Case 1, 1995: psychosis, dementia, chorea, ataxia, and supranuclear gaze dysfunction. Mov Disord. 1995;10:257–62.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Oates CE, Bosch EP, Hart MN. Movement disorders associated with chronic GM2 gangliosidosis. Case report and review of the literature. Eur Neurol. 1986;25:154–9.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Danek A, Rubio JP, Rampoldi L, et al. McLeod neuroacanthocytosis: genotype and phenotype. Ann Neurol. 2001;50:755–64.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Hewer E, Danek A, Schoser BG, et al. McLeod myopathy revisited—more neurogenic and less benign. Brain. 2007;130:3285–96.

    PubMed  Article  Google Scholar 

  58. 58.

    Evidente VG, Advincula J, Esteban R, et al. Phenomenology of “Lubag” or X-linked dystonia-parkinsonism. Mov Disord. 2002;17:1271–7.

    PubMed  Article  Google Scholar 

  59. 59.

    Factor SA, Barron KD. Mosaic pattern of gliosis in the neostratum of a North American man with craniocervical dystonia and parkinsonism. Mov Disord. 1997;12:783–9.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Gibb WR, Kilford L, Marsden CD. Severe generalised dystonia associated with a mosaic pattern of striatal gliosis. Mov Disord. 1992;7(3):217–23.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Goldenberg PC, Steiner RD, Merkens LS, et al. Remarkable improvement in adult Leigh syndrome with partial cytochrome c oxidase deficiency. Neurology. 2003;60:865–8.

    PubMed  CAS  Google Scholar 

  62. 62.

    Crimi M, Galbiati S, Moroni I, et al. A missense mutation in the mitochondrial ND5 gene associated with a Leigh-MELAS overlap syndrome. Neurology. 2003;60:1857–61.

    PubMed  Google Scholar 

  63. 63.

    Caer M, Viala K, Levy R, et al. Adult-onset chorea and mitochondrial cytopathy. Mov Disord. 2005;20:490–2.

    PubMed  Article  Google Scholar 

  64. 64.

    Morimoto N, Nagano I, Deguchi K, et al. Leber hereditary optic neuropathy with chorea and dementia resembling Huntington disease. Neurology. 2004;63:2451–2.

    PubMed  CAS  Google Scholar 

  65. 65.

    Lee BC, Hwang SH, Chang GY. Hemiballismus-hemichorea in older diabetic women: a clinical syndrome with MRI correlation. Neurology. 1999;52:646–8.

    PubMed  CAS  Google Scholar 

  66. 66.

    Ahlskog JE, Nishino H, Evidente VG, et al. Persistent chorea triggered by hyperglycemic crisis in diabetics. Mov Disord. 2001;16:890–8.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Shyambabu C, Sinha S, Taly AB, et al. Serum vitamin B12 deficiency and hyperhomocystinemia: a reversible cause of acute chorea, cerebellar ataxia in an adult with cerebral ischemia. J Neurol Sci. 2008;273:152–4.

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Pacchetti C, Cristina S, Nappi G. Reversible chorea and focal dystonia in vitamin B12 deficiency. N Engl J Med. 2002;347:295.

    PubMed  Article  Google Scholar 

  69. 69.

    Kirvan CA, Swedo SE, Heuser JS, Cunningham MW. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat Med. 2003;9:914–20.

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Bowen J, Mitchell T, Pearce R, Quinn N. Chorea in new variant Creutzfeldt-Jacob disease. Mov Disord. 2000;15:1284–5.

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    McKee D, Talbot P. Chorea as a presenting feature of variant Creutzfeldt-Jakob disease. Mov Disord. 2003;18:837–8.

    PubMed  Article  Google Scholar 

  72. 72.

    Passarin MG, Alessandrini F, Nicolini GG, et al. Reversible choreoathetosis as the early onset of HIV-encephalopathy. Neurol Sci. 2005;26:55–6.

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Sporer B, Linke R, Seelos K, et al. HIV-induced chorea: evidence for basal ganglia dysregulation by SPECT. J Neurol. 2005;252:356–8.

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Ozben S, Erol C, Ozer F, Tiras R. Chorea as the presenting feature of neurosyphilis. Neurol India. 2009;57:347–9.

    PubMed  Article  Google Scholar 

  75. 75.

    Font J, Cervera R, Espinosa G, et al. Systemic lupus erythematosus (SLE) in childhood: analysis of clinical and immunological findings in 34 patients and comparison with SLE characteristics in adults. Ann Rheum Dis. 1998;57:456–9.

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Watanabe T, Onda H. Hemichorea with antiphospholipid antibodies in a patient with lupus nephritis. Pediatr Nephrol. 2004;19:451–3.

    PubMed  Article  Google Scholar 

  77. 77.

    Venegas FP, Sinning M, Miranda M. Primary Sjogren’s syndrome presenting as a generalized chorea. Parkinsonism Relat Disord. 2005;11:193–4.

    Article  Google Scholar 

  78. 78.

    Ciubotaru CR, Esfahani F, Benedict RH, et al. Chorea and rapidly progressive subcortical dementia in antiphospholipid syndrome. J Clin Rheumatol. 2002;8:332–9.

    PubMed  Article  Google Scholar 

  79. 79.

    Kumar H, Masiowski P, Jog M. Chorea in the elderly with mutation positive polycythemia vera: a case report. Can J Neurol Sci. 2009;36:370–2.

    PubMed  Google Scholar 

  80. 80.

    Pereira AC, Edwards MJ, Buttery PC, et al. Choreic syndrome and coeliac disease: a hitherto unrecognised association. Mov Disord. 2004;19:478–82.

    PubMed  Article  Google Scholar 

  81. 81.

    Honnorat J, Cartalat-Carel S, Ricard D, et al. Onco-neural antibodies and tumour type determine survival and neurological symptoms in paraneoplastic neurological syndromes with Hu or CV2/CRMP5 antibodies. J Neurol Neurosurg Psychiatry. 2009;80:412–6.

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Dorban S, Gille M, Kessler R, et al. Chorea-athetosis in the anti-Hu syndrome. Rev Neurol (Paris). 2004;160:126–9.

    CAS  Google Scholar 

  83. 83.

    Krolak-Salmon P, Androdias G, Meyronet D, et al. Slow evolution of cerebellar degeneration and chorea in a man with anti-Yo antibodies. Eur J Neurol. 2006;13:307–8.

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    • Vincent A, Bien CG: Anti-NMDA-receptor encephalitis: a cause of psychiatric, seizure, and movement disorders in young adults. Lancet Neurol 2008, 7: 1074–1075. This is a review of this recently recognized, but not uncommon, condition.

    PubMed  Article  Google Scholar 

  85. 85.

    Dalmau J, Tuzun E, Wu HY, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61:25–36.

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Surie S, Tijssen MA, Biervliet JD, et al. Chorea in adults following pulmonary endarterectomy. Mov Disord. 2010;25:1101–4.

    PubMed  Article  Google Scholar 

  87. 87.

    Passarin MG, Romito S, Avesani M, et al. Late-onset choreoathetotic syndrome following heart surgery. Neurol Sci. 2010;31:95–7.

    PubMed  Article  Google Scholar 

  88. 88.

    Suchowersky O, Muthipeedika J. A case of late-onset chorea. Nat Clin Pract Neurol. 2005;1:113–6.

    PubMed  Article  Google Scholar 

  89. 89.

    Gironell A, de Molina RM, Sancho G, Kulisevsky J: Chorea induced by a luteinizing hormone-releasing hormone analog. J Neurol. 2008;255:1264–5.

    Google Scholar 

  90. 90.

    Bota DA, Dafer RM. Acute methotrexate neurotoxicity with choreiform movements and focal neurological deficits: a case report. South Med J. 2009;102:1071–4.

    PubMed  Article  Google Scholar 

  91. 91.

    Necioglu OD, Yldrmak Y, Kenangil G, et al. Intrathecal methotrexate-induced acute chorea. J Pediatr Hematol Oncol. 2009;31:57–8.

    Article  Google Scholar 

  92. 92.

    van der Plas AA, van Rijn MA, van Hilten JJ. Baclofen-induced chorea in complex regional pain syndrome-related dystonia. Mov Disord. 2010;25:959–60.

    PubMed  Article  Google Scholar 

  93. 93.

    Weiner WJ, Nausieda PA, Klawans HL. Methylphenidate-induced chorea: case report and pharmacologic implications. Neurology. 1978;28:1041–4.

    PubMed  CAS  Google Scholar 

  94. 94.

    Thiriaux A, de St Martin A, Vercueil L, et al. Co-occurrence of infantile epileptic seizures and childhood paroxysmal choreoathetosis in one family: clinical, EEG, and SPECT characterization of episodic events. Mov Disord. 2002;17:98–104.

    PubMed  Article  Google Scholar 

  95. 95.

    Rainier S, Thomas D, Tokarz D, et al. Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch Neurol. 2004;61:1025–9.

    PubMed  Article  Google Scholar 

  96. 96.

    Gancher ST, Nutt JG. Autosomal dominant episodic ataxia: a heterogeneous syndrome. Mov Disord. 1986;1:239–53.

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Browne DL, Gancher ST, Nutt JG, et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet. 1994;8:136–40.

    PubMed  Article  CAS  Google Scholar 

  98. 98.

    Biolsi B, Cif L, Fertit HE, et al. Long-term follow-up of Huntington disease treated by bilateral deep brain stimulation of the internal globus pallidus. J Neurosurg. 2008;109:130–2.

    PubMed  Article  Google Scholar 

  99. 99.

    Kang GA, Heath S, Rothlind J, Starr PA: Long-term follow-up of pallidal deep brain stimulation in two cases of Huntington's disease. J Neurol Neurosurg Psychiatry 2010

  100. 100.

    Kaufman CB, Mink JW, Schwalb JM. Bilateral deep brain stimulation for treatment of medically refractory paroxysmal nonkinesigenic dyskinesia. J Neurosurg. 2010;112:847–50.

    PubMed  Article  Google Scholar 

  101. 101.

    Cicchetti F, Saporta S, Hauser RA, et al. Neural transplants in patients with Huntington's disease undergo disease-like neuronal degeneration. Proc Natl Acad Sci U S A. 2009;106:12483–8.

    PubMed  Article  CAS  Google Scholar 

  102. 102.

    Bachoud-Levi AC, Gaura V, Brugieres P, et al. Effect of fetal neural transplants in patients with Huntington's disease 6 years after surgery: a long-term follow-up study. Lancet Neurol. 2006;5:303–9.

    PubMed  Article  Google Scholar 

  103. 103.

    Walker RH. Introduction: an approach to the patient with chorea. In: Walker RH, editor. The differential diagnosis of chorea. Oxford: Oxford University Press; 2010.

    Google Scholar 

Download references

Disclosure

Conflicts of interest: R.H. Walker: has received honoraria from Bioavail, and has received payment from Scienta and Intellyst.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruth H. Walker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walker, R.H. Differential Diagnosis of Chorea. Curr Neurol Neurosci Rep 11, 385–395 (2011). https://doi.org/10.1007/s11910-011-0202-2

Download citation

Keywords

  • Chorea
  • Huntington’s disease
  • Basal ganglia
  • Neuroacanthocytosis
  • Huntington disease-like