Skip to main content
Log in

Genomic Profiles of Glioma

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Recent large-scale genomic profiling studies of glioma have yielded a proliferation of candidate subclasses, biomarkers and therapeutic targets for investigation. Some findings, such as that of IDH mutation in low-grade gliomas and secondary glioblastoma (GBM), fit well into established notions of different routes of gliomagenesis. Other results, such as the division of primary GBM based on signaling pathway alterations, suggest new pathogenetic routes with implications for treatment. The analysis of this data is still in the early stage. Nonetheless, several preliminary findings merit consideration in the development and interpretation of current clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

    Article  Google Scholar 

  2. Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.

    Article  PubMed  CAS  Google Scholar 

  3. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.

    Article  PubMed  Google Scholar 

  4. Huse JT, Holland EC. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer. 2010;10(5):319–31.

    Article  PubMed  CAS  Google Scholar 

  5. Jaeckle KA, Decker PA, Ballman KV, et al. Transformation of low grade glioma and correlation with outcome: an NCCTG database analysis. Journal of neuro-oncology. Dec 12 2010.

  6. Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21(21):2683–710.

    Article  PubMed  CAS  Google Scholar 

  7. Attolini CS, Cheng YK, Beroukhim R, et al. A mathematical framework to determine the temporal sequence of somatic genetic events in cancer. Proc Natl Acad Sci USA. 2010;107(41):17604–9.

    Article  PubMed  CAS  Google Scholar 

  8. Caskey L, Wang R, Bruner J, Yung W, Zhang W. Reactivation of insulin-like growth factor binding protein 2 expression in glioblastoma multiforme: a revelation by parallel gene expression profiling. Cancer Research. Jan 1 1999.

  9. Fuller GN, Hess KR, Rhee C, et al. Molecular Classification of Human Diffuse Gliomas by Multidimensional Scaling Analysis of Gene Expression Profiles Parallels Morphology-Based Classification, Correlates with Survival, and Reveals Clinically-Relevant Novel Glioma Subsets. Brain Pathol. 2002;12:108–16.

    Article  PubMed  CAS  Google Scholar 

  10. Kim S, Dougherty ER, Shmulevich I, et al. Identification of combination gene sets for glioma classification. Mol Cancer Ther. 2002;1:1229–36.

    PubMed  CAS  Google Scholar 

  11. Rickman D, Bobek M, Misek D, Kuick R, Blaivas M. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Research. Jan 1 2001.

  12. Sallinen S, Sallinen P, Haapasalo H, Helin H. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Research. Jan 1 2000.

  13. Shai R, Shi T, Kremen T, Horvath S, Liau L. Gene expression profiling identifies molecular subtypes of gliomas. Oncogene. 2003;22:4918–23.

    Article  PubMed  CAS  Google Scholar 

  14. Somasundaram K, Reddy SP, Vinnakota K, et al. Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma. Oncogene. 2005;24(47):7073–83.

    Article  PubMed  CAS  Google Scholar 

  15. Tanwar M, Gilbert M, Holland E. Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. Cancer Research. Jan 1 2002.

  16. Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9(3):157–73.

    Article  PubMed  CAS  Google Scholar 

  17. Freije W, Castro-Vargas F, Fang Z, et al. Gene expression profiling of gliomas strongly predicts survival. Cancer Res. 2004;64(18):6503.

    Article  PubMed  CAS  Google Scholar 

  18. Nigro J, Misra A, Zhang L, Smirnov I, Colman H. Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Research. Jan 1 2005.

  19. • Verhaak RGW, Hoadley KA, Purdom E, et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110. This paper defines the major transcriptomal and molecular subclasses of primary GBM arising from TCGA preliminary analysis.

    Article  PubMed  CAS  Google Scholar 

  20. Brennan C, Momota H, Hambardzumyan D, et al. Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations. PLoS ONE. 2009;4(11):1–10.

    Article  Google Scholar 

  21. Chen G, Gharib TG, Huang CC, et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics. 2002;1(4):304–13.

    Article  PubMed  CAS  Google Scholar 

  22. Guo Y, Xiao P, Lei S, et al. How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim Biophys Sin (Shanghai). 2008;40(5):426–36.

    Article  CAS  Google Scholar 

  23. Huse J, Phillips H, Brennan C. Molecular Subclassification of Diffuse Gliomas: Seeing Order in the Chaos. Glia. 2011;in press.

  24. Paugh BS, Qu C, Jones C, et al. Integrated Molecular Genetic Profiling of Pediatric High-Grade Gliomas Reveals Key Differences With the Adult Disease. J Clin Oncol. 2010;28(18):3061–8.

    Article  PubMed  Google Scholar 

  25. • Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–744. This paper describes the nature of IDH mutation in cancer and investigates the biological effects.

    Article  Google Scholar 

  26. Bleeker FE, Atai NA, Lamba S, et al. The prognostic IDH1(R132) mutation is associated with reduced NADP+−dependent IDH activity in glioblastoma. Acta Neuropathol. 2010;119(4):487–94.

    Article  PubMed  CAS  Google Scholar 

  27. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 2008;116(6):597–602.

    Article  PubMed  CAS  Google Scholar 

  28. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73.

    Article  PubMed  CAS  Google Scholar 

  29. Hartmann C, Meyer J, Balss J, et al. Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol. 2009;118(4):469–74.

    Article  PubMed  Google Scholar 

  30. Labussiere M, Idbaih A, Wang XW, et al. All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology. 2010;74(23):1886–90.

    Article  PubMed  CAS  Google Scholar 

  31. Dang L, Jin S, Su SM. IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med. 2010;16(9):387–97.

    Article  PubMed  CAS  Google Scholar 

  32. • Noushmehr H, Weisenberger DJ, Diefes K, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17(5):510–522. This paper discusses the discovery of G-CIMP of GBM, its prognostic power, and its relationship to IDH mutation.

    Article  PubMed  CAS  Google Scholar 

  33. Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67.

    Article  PubMed  CAS  Google Scholar 

  34. Weller M, Felsberg J, Hartmann C, et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol. 2009;27(34):5743–50.

    Article  PubMed  CAS  Google Scholar 

  35. •• Hartmann C, Hentschel B, Wick W, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol. 2010;120(6):707–718. This study investigates the prognostic power of IDH mutation in relation to established prognostic variables in 382 patients with anaplastic astrocytoma or GBM. The results suggest that IDH mutation may be the most significant predictor of survival, comparable to or surpassing WHO III/IV histologic grade.

    Article  PubMed  Google Scholar 

  36. Houillier C, Wang X, Kaloshi G, et al. IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology. 2010;75(17):1560–6.

    Article  PubMed  CAS  Google Scholar 

  37. van den Bent MJ, Dubbink HJ, Marie Y, et al. IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin Cancer Res. 2010;16(5):1597–604.

    Article  PubMed  Google Scholar 

  38. Capper D, Weissert S, Balss J, et al. Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol. 2010;20(1):245–54.

    Article  PubMed  CAS  Google Scholar 

  39. Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A. Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol. 2009;118(5):599–601.

    Article  PubMed  CAS  Google Scholar 

  40. Kato Y, Jin G, Kuan CT, McLendon RE, Yan H, Bigner DD. A monoclonal antibody IMab-1 specifically recognizes IDH1R132H, the most common glioma-derived mutation. Biochem Biophys Res Commun. 2009;390(3):547–51.

    Article  PubMed  CAS  Google Scholar 

  41. Camelo-Piragua S, Jansen M, Ganguly A, Kim JC, Louis DN, Nutt CL. Mutant IDH1-specific immunohistochemistry distinguishes diffuse astrocytoma from astrocytosis. Acta Neuropathol. 2010;119(4):509–11.

    Article  PubMed  Google Scholar 

  42. Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.

    Article  PubMed  CAS  Google Scholar 

  43. Weller M, Stupp R, Reifenberger G, et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol. 2010;6(1):39–51.

    Article  PubMed  CAS  Google Scholar 

  44. Brandes AA, Franceschi E, Tosoni A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26(13):2192–7.

    Article  PubMed  Google Scholar 

  45. Brandsma D, van den Bent MJ. Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol. 2009;22(6):633–8.

    Article  PubMed  Google Scholar 

  46. Allingham-Hawkins D, Lea A, Levine S. DecisionDx-GBM gene expression assay for prognostic testing in glioblastoma multiform. PLoS Curr. 2010;2:RRN1186.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cameron Brennan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brennan, C. Genomic Profiles of Glioma. Curr Neurol Neurosci Rep 11, 291–297 (2011). https://doi.org/10.1007/s11910-011-0198-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-011-0198-7

Keywords

Navigation