Skip to main content

Advertisement

Log in

Genetics of Neurodegeneration with Brain Iron Accumulation

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The condition originally called Hallervorden-Spatz syndrome is a collection of related disorders involving abnormal iron accumulation in the basal ganglia, usually manifesting with a movement disorder. To date, mutations in the following genes have been associated with neurodegeneration with brain iron accumulation (NBIA) phenotypes: PANK2, PLA2G6, FA2H, ATP13A2, C2orf37, CP, and FTL. This collection, now classified under the umbrella term NBIA, continues to evolve as new genes and associated phenotypes are recognized. As this body of information continues to grow, better approaches to diagnosis and treatment have become available. Continued investigations of the underlying pathogenesis of disease, with a focus on lipid, iron, and energy metabolism, will lead to the identification of new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Zhou B, Westaway SK, Levinson B, et al. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden— Spatz syndrome. Nat Genet. 2001;28(4):345–9.

    Article  PubMed  CAS  Google Scholar 

  2. Hayflick SJ, Westaway SK, Levinson B, et al. Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med. 2003;348(1):33–40.

    Article  PubMed  CAS  Google Scholar 

  3. Egan RA, Weleber RG, Hogarth P, et al. Neuro-ophthalmologic and electroretinographic findings in pantothenate kinase-associated neurodegeneration (formerly Hallervorden-Spatz syndrome). Am J Ophthalmol. 2005;140(2):267–74.

    Article  PubMed  CAS  Google Scholar 

  4. Aggarwal A, Schneider SA, Houlden H, et al. Indian-subcontinent NBIA: unusual phenotypes, novel PANK2 mutations, and undetermined genetic forms. Mov Disord. 2010;25(10):1424–31.

    Article  PubMed  Google Scholar 

  5. Hayflick SJ, Penzien JM, Michl W, et al. Cranial MRI changes may precede symptoms in Hallervorden-Spatz syndrome. Pediatr Neurol. 2001;25(2):166–9.

    Article  PubMed  CAS  Google Scholar 

  6. Baumeister FA, Auer DP, Hortnagel K, et al. The eye-of-the-tiger sign is not a reliable disease marker for Hallervorden-Spatz syndrome. Neuropediatrics. 2005;36(3):221–2.

    Article  PubMed  CAS  Google Scholar 

  7. McNeill A, Birchall D, Hayflick SJ. T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology. 2008;70(18):1614–9.

    Article  PubMed  CAS  Google Scholar 

  8. Hartig MB, Hortnagel K, Garavaglia B, et al. Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation. Ann Neurol. 2006;59(2):248–56.

    Article  PubMed  CAS  Google Scholar 

  9. •• Kurian MA, Morgan NV, MacPherson L, et al. Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology. 2008;70(18):1623–9. This is one of two clinical papers published following the discovery that mutations in PLA2G6 cause INAD. It defines the phenotype and provides guidance for diagnosing new cases.

    Article  PubMed  CAS  Google Scholar 

  10. Aicardi J, Castelein P. Infantile neuroaxonal dystrophy. Brain. 1979;102(4):727–48.

    Article  PubMed  CAS  Google Scholar 

  11. •• Gregory A, Westaway SK, Holm IE, et al. Neurodegeneration associated with genetic defects in phospholipase A2. Neurology. 2008;71(18):1402–9. This is one of two clinical papers published following the discovery that mutations in PLA2G6 cause INAD. It defines the phenotype and provides guidance for diagnosing new cases.

    Article  PubMed  CAS  Google Scholar 

  12. Paisan-Ruiz C, Bhatia KP, Li A, et al. Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol. 2009;65:19–23.

    Article  PubMed  Google Scholar 

  13. Yoshino H, Tomiyama H, Tachibana N, et al. Phenotypic spectrum of patients with PLA2G6 mutation and PARK14-linked parkinsonism. Neurology. 2010;75(15):1356–61.

    Article  PubMed  CAS  Google Scholar 

  14. Engel LA, Jing Z, O’Brien DE, et al. Catalytic function of PLA2G6 is impaired by mutations associated with infantile neuroaxonal dystrophy but not dystonia-parkinsonism. PLoS ONE. 2010;5(9):e12897.

    Article  PubMed  Google Scholar 

  15. Tonelli A, Romaniello R, Grasso R, et al. Novel splice-site mutations and a large intragenic deletion in PLA2G6 associated with a severe and rapidly progressive form of infantile neuroaxonal dystrophy. Clin Genet. 2010;78(5):432040.

    Article  Google Scholar 

  16. Baburina I, Jackowski S. Cellular responses to excess phospholipid. J Biol Chem. 1999;274(14):9400–8.

    Article  PubMed  CAS  Google Scholar 

  17. Morgan NV, Westaway SK, Morton JE, et al. PLA2G6, encoding a phospholipase A(2), is mutated in neurodegenerative disorders with high brain iron. Nat Genet. 2006;38(7):752–4.

    Article  PubMed  CAS  Google Scholar 

  18. Rakheja D, Uddin N, Mitui M, et al. Fetal akinesia deformation sequence and neuroaxonal dystrophy without PLA2G6 mutation. Pediatr Dev Pathol. 2010 (Epub ahead of print), Mar 17.

  19. Fyfe JC, Al-Tamimi RA, Castellani RJ, et al.: Inherited neuroaxonal dystrophy in dogs causing lethal, fetal-onset motor system dysfunction and cerebellar hypoplasia. J Comp Neurol. 2010 Sep 15,518(18):3771–3784.

    Article  PubMed  Google Scholar 

  20. • Kruer MC, Paisan-Ruiz C, Boddaert N, et al. Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol. 2010;68(5):611–8. This paper describes the most recently identified NBIA gene and its potential roles in the pathways involved in various forms of NBIA.

    Article  PubMed  CAS  Google Scholar 

  21. Hama H. Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. Biochim Biophys Acta. 2010;1801(4):405–14.

    PubMed  CAS  Google Scholar 

  22. Edvardson S, Hama H, Shaag A, et al. Mutations in the fatty acid 2-hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia. Am J Hum Genet. 2008;83(5):643–8.

    Article  PubMed  CAS  Google Scholar 

  23. Dick KJ, Eckhardt M, Paisan-Ruiz C, et al. Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat. 2010;31(4):E1251–60.

    Article  PubMed  CAS  Google Scholar 

  24. Schneider SA, Paisan-Ruiz C, Quinn NP, et al. ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord. 2010;25(8):979–84.

    Article  PubMed  Google Scholar 

  25. AS Najim al-Din, al-Kurdi A, Dasouki M, et al. Autosomal recessive ataxia, slow eye movements and psychomotor retardation. J Neurol Sci. 1994;124(1):61–6.

    Article  Google Scholar 

  26. Williams DR, Hadeed A, al-Din AS, et al. Kufor Rakeb disease: autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov Disord. 2005;20(10):1264–71.

    Article  PubMed  Google Scholar 

  27. Behrens MI, Bruggemann N, Chana P, et al. Clinical spectrum of Kufor-Rakeb syndrome in the Chilean kindred with ATP13A2 mutations. Mov Disord. 2010;25(12):1929–37.

    Article  PubMed  Google Scholar 

  28. Santoro L, Breedveld Gj, Mangenelli F, et al. Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability. Neurogenetics. 2010, Sep 21, (Epub ahead of print).

  29. Crosiers D, Ceulemans B, Meeus B et al.: Juvenile dystonia-parkinsonism and dementia caused by a novel ATP13A2 frameshift mutation. Parkinsonism Relat Disord. (2010), doi:10.1016/j.parkreldis.2010.10.011.

  30. Chien HF, Bonifati V, Barbosa ER. ATP13A2-related neurodegeneration (PARK9) without evidence of brain iron accumulation. Mov Disord. in press.

  31. Ramirez A, Heimbach A, Grundemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006;38(10):1184–91.

    Article  PubMed  CAS  Google Scholar 

  32. Lees AJ, Singleton AB. Clinical heterogeneity of ATP13A2 linked disease (Kufor-Rakeb) justifies a PARK designation. Neurology. 2007;68(19):1553–4.

    Article  PubMed  Google Scholar 

  33. Di Fonzo A, Chien HF, Socal M, et al. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology. 2007;68(19):1557–62.

    Article  PubMed  Google Scholar 

  34. Ning YP, Kanai K, Tomiyama H, et al. PARK9-linked parkinsonism in eastern Asia: mutation detection in ATP13A2 and clinical phenotype. Neurology. 2008;70(16 Pt 2):1491–3.

    Article  PubMed  CAS  Google Scholar 

  35. Woodhouse NJ, Sakati NA. A syndrome of hypogonadism, alopecia, diabetes mellitus, mental retardation, deafness, and ECG abnormalities. J Med Genet. 1983;20(3):216–9.

    Article  PubMed  CAS  Google Scholar 

  36. Al-Semari A, Bohlega S. Autosomal-recessive syndrome with alopecia, hypogonadism, progressive extra-pyramidal disorder, white matter disease, sensory neural deafness, diabetes mellitus, and low IGF1. Am J Med Genet A. 2007;143(2):149–60.

    PubMed  Google Scholar 

  37. Alazami AM, Al-Saif A, Al-Semari A, et al. Mutations in C2orf37, encoding a nucleolar protein, cause hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome. Am J Hum Genet. 2008;83(6):684–91.

    Article  PubMed  CAS  Google Scholar 

  38. Miyajima H, Takahashi Y, Kono S. Aceruloplasminemia, an inherited disorder of iron metabolism. Biometals. 2003;16(1):205–13.

    Article  PubMed  CAS  Google Scholar 

  39. Yoshida K, Furihata K, Takeda S, et al. A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet. 1995;9(3):267–72.

    Article  PubMed  CAS  Google Scholar 

  40. Miyajima H, Kohno S, Takahashi Y, et al. Estimation of the gene frequency of aceruloplasminemia in Japan. Neurology. 1999;53(3):617–9.

    PubMed  CAS  Google Scholar 

  41. Wild EJ, Mudanohwo EE, Sweeney MG, et al. Huntington’s disease phenocopies are clinically and genetically heterogeneous. Mov Disord. 2008;23(5):716–20.

    Article  PubMed  Google Scholar 

  42. Crompton DE, Chinnery PF, Bates D, et al. Spectrum of movement disorders in neuroferritinopathy. Mov Disord. 2005;20(1):95–9.

    Article  PubMed  Google Scholar 

  43. Curtis AR, Fey C, Morris CM, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet. 2001;28(4):350–4.

    Article  PubMed  CAS  Google Scholar 

  44. Kruer MC, Boddaert N, Schneider SA, et al. Neuroimaging features of Neurodegeneration with Brain Iron Accumulation (NBIA). Am J Neuroradiol. in press.

  45. Hartig MB, Luso A, Hempel M, et al. Identification of a second major locus for neurodegeneration with brain iron accumulation. (abstract/program #314). Presented at the 59th Annual Meeting of The American Society of Human Genetics, October 24, 2009, Honolulu, Hawaii. Available at http://www.ashg.org/2009meeting/abstracts/fulltext/.

  46. Albright AL, Ferson SS. Intraventricular baclofen for dystonia: techniques and outcomes. Clinical article. J Neurosurg Pediatr. 2009;3(1):11–4.

    Article  PubMed  Google Scholar 

  47. Castelnau P, Cif L, Valente EM, et al. Pallidal stimulation improves pantothenate kinase-associated neurodegeneration. Ann Neurol. 2005;57(5):738–41.

    Article  PubMed  Google Scholar 

  48. Mikati MA, Yehya A, Darwish H, et al. Deep brain stimulation as a mode of treatment of early onset pantothenate kinase-associated neurodegeneration. Eur J Paediatr Neurol. 2009;13(1):61–4.

    Article  PubMed  Google Scholar 

  49. Krause M, Fogel W, Tronnier V, et al. Long-term benefit to pallidal deep brain stimulation in a case of dystonia secondary to pantothenate kinase-associated neurodegeneration. Mov Disord. 2006;21(12):2255–7.

    Article  PubMed  Google Scholar 

  50. Boddaert N, Le Quan Sang KH, Rotig A, et al. Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood. 2007;110(1):401–8.

    Article  PubMed  CAS  Google Scholar 

  51. Rana A, Seinen E, Siudeja K, et al. Pantethine rescues a Drosophila model for pantothenate kinase-associated neurodegeneration. Proc Natl Acad Sci USA. 2010;107(15):6988–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison Gregory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregory, A., Hayflick, S.J. Genetics of Neurodegeneration with Brain Iron Accumulation. Curr Neurol Neurosci Rep 11, 254–261 (2011). https://doi.org/10.1007/s11910-011-0181-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-011-0181-3

Keywords

Navigation