Current Neurology and Neuroscience Reports

, Volume 10, Issue 6, pp 431–439 | Cite as

Rare Causes of Dystonia Parkinsonism



The list of genetic causes of syndromes of dystonia parkinsonism grows constantly. As a consequence, the diagnosis becomes more and more challenging for the clinician. Here, we summarize the important causes of dystonia parkinsonism including autosomal-dominant, recessive, and x-linked forms. We cover dopa-responsive dystonia, Wilson’s disease, Parkin-, PINK1-, and DJ-1-associated parkinsonism (PARK2, 6, and 7), x-linked dystonia-parkinsonism/Lubag (DYT3), rapid-onset dystonia-parkinsonism (DYT12) and DYT16 dystonia, the syndromes of Neurodegeneration with Brain Iron Accumulation (NBIA) including pantothenate kinase (PANK2)- and PLA2G6 (PARK14)-associated neurodegeneration, neuroferritinopathy, Kufor-Rakeb disease (PARK9) and the recently described SENDA syndrome; FBXO7-associated neurodegeneration (PARK15), autosomal-recessive spastic paraplegia with a thin corpus callosum (SPG11), and dystonia parkinsonism due to mutations in the SLC6A3 gene encoding the dopamine transporter. They have in common that in all these syndromes there may be a combination of dystonic and parkinsonian features, which may be complicated by pyramidal tract involvement. The aim of this review is to familiarize the clinician with the phenotypes of these disorders.


Dopa-responsive dystonia Wilson’s disease Parkin-associated parkinsonism PINK1-associated parkinsonism DJ-1-associated parkinsonism PARK2 PARK6 PARK7 x-linked dystonia-parkinsonism Lubag disease DYT3 Rapid-onset dystonia-parkinsonism DYT12 DYT16 Neurodegeneration with Brain Iron Accumulation (NBIA) Pantothenate kinase-associated neurodegeneration PLA2G6-associated neurodegeneration PARK14 Neuroferritinopathy Kufor-Rakeb disease PARK9 FBXO7-associated neurodegeneration PARK15 Spastic paraplegia with a thin corpus callosum (SPG11) SLC6A3 gene SENDA syndrome 



Susanne A. Schneider was supported by a research grant from the University of Lübeck (E48.2009), a grant from the Deutsche Forschungsgemeinschaft (LO1555/3-1), the Novartis Foundation for Therapeutic Research, and the Empiris Foundation for Research in Brain Diseases, CH.


No potential conflicts of interest relevant to this article were reported.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Gasser T: Update on the genetics of Parkinson’s disease. Mov Disord 2007, (22 Suppl 17):S343–S350.CrossRefPubMedGoogle Scholar
  2. 2.
    Healy DG, Abou-Sleiman PM, Wood NW: PINK, PANK, or PARK? A clinicians’ guide to familial parkinsonism. Lancet Neurol 2004, 3:652–662.CrossRefPubMedGoogle Scholar
  3. 3.
    Hardy J, Cai H, Cookson MR, et al.: Genetics of Parkinson’s disease and parkinsonism. Ann Neurol 2006, 60:389–398.CrossRefPubMedGoogle Scholar
  4. 4.
    Carvalho Aguiar PM, Ozelius LJ: Classification and genetics of dystonia. Lancet Neurol 2002, 1:316–325.CrossRefPubMedGoogle Scholar
  5. 5.
    Nemeth AH: The genetics of primary dystonias and related disorders. Brain 2002, 125(Pt 4):695–721.CrossRefPubMedGoogle Scholar
  6. 6.
    Nygaard TG: Dopa-responsive dystonia. Curr Opin Neurol 1995, 8:310–313.CrossRefPubMedGoogle Scholar
  7. 7.
    Ludecke B, Dworniczak B, Bartholome K: A point mutation in the tyrosine hydroxylase gene associated with Segawa’s syndrome. Hum Genet 1995, 95:123–125.PubMedGoogle Scholar
  8. 8.
    Steinberger D, Blau N, Goriuonov D, et al.: Heterozygous mutation in 5′-untranslated region of sepiapterin reductase gene (SPR) in a patient with dopa-responsive dystonia. Neurogenetics 2004, 5:187–190.CrossRefPubMedGoogle Scholar
  9. 9.
    Furukawa Y, Guttman M, Sparagana SP, et al.: Dopa-responsive dystonia due to a large deletion in the GTP cyclohydrolase I gene. Ann Neurol 2000, 47:517–520.CrossRefPubMedGoogle Scholar
  10. 10.
    Hwu WL, Wang PJ, Hsiao KJ, et al.: Dopa-responsive dystonia induced by a recessive GTP cyclohydrolase I mutation. Hum Genet 1999, 105:226–230.CrossRefPubMedGoogle Scholar
  11. 11.
    • Trender-Gerhard I, Sweeney MG, Schwingenschuh P, et al.: Autosomal-dominant GTPCH1-deficient DRD: clinical characteristics and long-term outcome of 34 patients. J Neurol Neurosurg Psychiatry 2009, 80:839–845. This study is a large genotype-phenotype correlation analysis for dopa-responsive dystonia due to the GTPCH1 mutation.CrossRefPubMedGoogle Scholar
  12. 12.
    Clot F, Grabli D, Cazeneuve C, et al.: Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with Dopa-responsive dystonia. Brain 2009, 132(Pt 7):1753–1763.CrossRefPubMedGoogle Scholar
  13. 13.
    Lucking CB, Durr A, Bonifati V, et al.: Association between early-onset Parkinson’s disease and mutations in the parkin gene. French Parkinson’s Disease Genetics Study Group. N Engl J Med 2000, 342:1560–1567.CrossRefPubMedGoogle Scholar
  14. 14.
    Nisipeanu P, Inzelberg R, Abo MS, et al.: Parkin gene causing benign autosomal recessive juvenile parkinsonism. Neurology 2001, 56:1573–1575.PubMedGoogle Scholar
  15. 15.
    Khan NL, Graham E, Critchley P, et al.: Parkin disease: a phenotypic study of a large case series. Brain 2003, 126(Pt 6):1279–1292.CrossRefPubMedGoogle Scholar
  16. 16.
    Lohmann E, Periquet M, Bonifati V, et al.: How much phenotypic variation can be attributed to parkin genotype? Ann Neurol 2003, 54:176–185.CrossRefPubMedGoogle Scholar
  17. 17.
    Bozi M, Bhatia KP: Paroxysmal exercise-induced dystonia as a presenting feature of young-onset Parkinson’s disease. Mov Disord 2003, 18:1545–1547.CrossRefPubMedGoogle Scholar
  18. 18.
    Khan NL, Katzenschlager R, Watt H, et al.: Olfaction differentiates parkin disease from early-onset parkinsonism and Parkinson disease. Neurology 2004, 62:1224–1226.PubMedGoogle Scholar
  19. 19.
    Kitada T, Asakawa S, Hattori N, et al.: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392:605–608.CrossRefPubMedGoogle Scholar
  20. 20.
    Hedrich K, Kann M, Lanthaler AJ, et al.: The importance of gene dosage studies: mutational analysis of the parkin gene in early-onset parkinsonism. Hum Mol Genet 2001, 10:1649–1656.CrossRefPubMedGoogle Scholar
  21. 21.
    Valente EM, Salvi S, Ialongo T, et al.: PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol 2004, 56:336–341.CrossRefPubMedGoogle Scholar
  22. 22.
    Valente EM, Bentivoglio AR, Dixon PH, et al.: Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet 2001, 68:895–900.CrossRefPubMedGoogle Scholar
  23. 23.
    Albanese A, Valente EM, Romito LM, et al.: The PINK1 phenotype can be indistinguishable from idiopathic Parkinson disease. Neurology 2005, 64:1958–1960.CrossRefPubMedGoogle Scholar
  24. 24.
    Doostzadeh J, Tetrud JW, Allen-Auerbach M, et al.: Novel features in a patient homozygous for the L347P mutation in the PINK1 gene. Parkinsonism Relat Disord 2007, 13:359–361.CrossRefPubMedGoogle Scholar
  25. 25.
    Rohe CF, Montagna P, Breedveld G, et al.: Homozygous PINK1 C-terminus mutation causing early-onset parkinsonism. Ann Neurol 2004, 56:427–431.CrossRefPubMedGoogle Scholar
  26. 26.
    Li Y, Tomiyama H, Sato K, et al.: Clinicogenetic study of PINK1 mutations in autosomal recessive early-onset parkinsonism. Neurology 2005, 64:1955–1957.CrossRefPubMedGoogle Scholar
  27. 27.
    Ibanez P, Lesage S, Lohmann E, et al.: Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain 2006, 129(Pt 3):686–694.CrossRefPubMedGoogle Scholar
  28. 28.
    Steinlechner S, Stahlberg J, Volkel B, et al.: Co-occurrence of affective and schizophrenia spectrum disorders with PINK1 mutations. J Neurol Neurosurg Psychiatry 2007, 78:532–535.CrossRefPubMedGoogle Scholar
  29. 29.
    Ephraty L, Porat O, Israeli D, et al.: Neuropsychiatric and cognitive features in autosomal-recessive early parkinsonism due to PINK1 mutations. Mov Disord 2007, 22:566–569.CrossRefPubMedGoogle Scholar
  30. 30.
    Weng YH, Chou YH, Wu WS, et al.: PINK1 mutation in Taiwanese early-onset parkinsonism : clinical, genetic, and dopamine transporter studies. J Neurol 2007, 254:1347–1355.CrossRefPubMedGoogle Scholar
  31. 31.
    Poole AC, Thomas RE, Andrews LA, et al.: The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A 2008, 105:1638–1643.CrossRefPubMedGoogle Scholar
  32. 32.
    Exner N, Treske B, Paquet D, et al.: Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci 2007, 27:12413–12418.CrossRefPubMedGoogle Scholar
  33. 33.
    Bonifati V, Rohe CF, Breedveld GJ, et al.: Early-onset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology 2005, 65:87–95.CrossRefPubMedGoogle Scholar
  34. 34.
    Rogaeva E, Johnson J, Lang AE, et al.: Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease. Arch Neurol 2004, 61:1898–1904.CrossRefPubMedGoogle Scholar
  35. 35.
    Tan EK, Yew K, Chua E, et al.: PINK1 mutations in sporadic early-onset Parkinson’s disease. Mov Disord 2006, 21:789–793.CrossRefPubMedGoogle Scholar
  36. 36.
    Bonifati V, Rizzu P, van Baren MJ, et al.: Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003, 299:256–259.CrossRefPubMedGoogle Scholar
  37. 37.
    Hedrich K, Djarmati A, Schafer N, et al.: DJ-1 (PARK7) mutations are less frequent than Parkin (PARK2) mutations in early-onset Parkinson disease. Neurology 2004, 62:389–394.PubMedGoogle Scholar
  38. 38.
    Hallervorden J, Spatz H: Eigenartige Erkrankung im extrapyramidalen System mit besonderer Beteiligung des Globus pallidus und der Substantia nigra.: Ein Beitrag zu den Beziehungen zwischen diesen beiden Zentren. Z Ges Neurol Psychiat 1922, 79:254–302.CrossRefGoogle Scholar
  39. 39.
    Hartig MB, Hortnagel K, Garavaglia B, et al.: Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation. Ann Neurol 2006, 59:248–256.CrossRefPubMedGoogle Scholar
  40. 40.
    Hayflick SJ: Neurodegeneration with brain iron accumulation: from genes to pathogenesis. Semin Pediatr Neurol 2006, 13:182–185.CrossRefPubMedGoogle Scholar
  41. 41.
    Hayflick SJ, Westaway SK, Levinson B, et al.: Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 2003, 348:33–40.CrossRefPubMedGoogle Scholar
  42. 42.
    Antonini A, Goldwurm S, Benti R, et al.: Genetic, clinical, and imaging characterization of one patient with late-onset, slowly progressive, pantothenate kinase-associated neurodegeneration. Mov Disord 2006, 21:417–418.CrossRefPubMedGoogle Scholar
  43. 43.
    Aggarwal A, Schneider SA, Houlden H, et al.: Indian-subcontinent NBIA: Unusual phenotypes—novel PANK2 mutations and evidence of other genetically undetermined forms. Mov Disord 2010 Apr 1 [Epub ahead of print].Google Scholar
  44. 44.
    Schneider SA, Aggarwal A, Bhatt M, et al.: Severe tongue protrusion dystonia: clinical syndromes and possible treatment. Neurology 2006, 67:940–943.CrossRefPubMedGoogle Scholar
  45. 45.
    Marelli C, Piacentini S, Garavaglia B, et al.: Clinical and neuropsychological correlates in two brothers with pantothenate kinase-associated neurodegeneration. Mov Disord 2005, 20:208–212.CrossRefPubMedGoogle Scholar
  46. 46.
    Sethi KD, Adams RJ, Loring DW, el Gammal T: Hallervorden-Spatz syndrome: clinical and magnetic resonance imaging correlations. Ann Neurol 1988, 24:692–694.CrossRefPubMedGoogle Scholar
  47. 47.
    Hayflick SJ, Hartman M, Coryell J, et al.: Brain MRI in neurodegeneration with brain iron accumulation with and without PANK2 mutations. AJNR Am J Neuroradiol 2006, 27:1230–1233.PubMedGoogle Scholar
  48. 48.
    Valentino P, Annesi G, Ciro Candiano IC, et al.: Genetic heterogeneity in patients with pantothenate kinase-associated neurodegeneration and classic magnetic resonance imaging eye-of-the-tiger pattern. Mov Disord 2006, 21:252–254.CrossRefPubMedGoogle Scholar
  49. 49.
    McNeill A, Birchall D, Hayflick SJ, et al.: T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 2008, 70:1614–1619.CrossRefPubMedGoogle Scholar
  50. 50.
    Cossu G, Cella C, Melis M, et al.: [123I]FP-CIT SPECT findings in two patients with Hallervorden-Spatz disease with homozygous mutation in PANK2 gene. Neurology 2005, 64:167–168.PubMedGoogle Scholar
  51. 51.
    Hermann W, Barthel H, Reuter M, et al.: [Hallervorden-Spatz disease: findings in the nigrostriatal system] [in German]. Nervenarzt 2000, 71:660–665.CrossRefPubMedGoogle Scholar
  52. 52.
    Morgan NV, Westaway SK, Morton JE, et al.: PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 2006, 38:752–754.CrossRefPubMedGoogle Scholar
  53. 53.
    Vinters H, Farrell M, Mischel P, Anders K: Diagnostic Neuropathology. New York, NY: Marcel Dekker Incorporated; 1998.Google Scholar
  54. 54.
    Paisán-Ruiz C, Li A, Schneider S, et al.: Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol Aging 2010 Jul 20 [Epub ahead of print].Google Scholar
  55. 55.
    Kurian MA, Morgan NV, MacPherson L, et al.: Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology 2008, 70:1623–1629.CrossRefPubMedGoogle Scholar
  56. 56.
    Khateeb S, Flusser H, Ofir R, et al.: PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet 2006, 79:942–948.CrossRefPubMedGoogle Scholar
  57. 57.
    Dorfman LJ, Pedley TA, Tharp BR, Scheithauer BW: Juvenile neuroaxonal dystrophy: clinical, electrophysiological, and neuropathological features. Ann Neurol 1978, 3:419–428.CrossRefPubMedGoogle Scholar
  58. 58.
    Rozdilsky B, Bolton CF, Takeda M: Neuroaxonal dystrophy. A case of delayed onset and protracted course. Acta Neuropathol 1971, 17:331–340.CrossRefPubMedGoogle Scholar
  59. 59.
    • Paisan-Ruiz C, Bhatia KP, Li A, et al.: Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 2009, 65:19–23. Although PLA2G6 mutations have been associated with INAD, in this paper the role for adult-onset dystonia parkinsonism is being demonstrated. Imaging features classically seen in INAD were absent, highlighting the important of considering this disorder even when the MRI brain scan is normal.CrossRefPubMedGoogle Scholar
  60. 60.
    Smesny S, Kinder D, Willhardt I, et al.: Increased calcium-independent phospholipase A2 activity in first but not in multiepisode chronic schizophrenia. Biol Psychiatry 2005, 57:399–405.CrossRefPubMedGoogle Scholar
  61. 61.
    Yu Y, Tao R, Shi J, et al.: A genetic study of two calcium-independent cytosolic PLA2 genes in schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2005, 73:351–354.CrossRefPubMedGoogle Scholar
  62. 62.
    •• Bras J, Singleton A, Cookson MR, Hardy J: Emerging pathways in genetic Parkinson’s disease: potential role of ceramide metabolism in Lewy body disease. FEBS J 2008, 275:5767–5773. The authors demonstrate how ceramide metabolism may be the connecting link between various disorders that are associated with (complicated) dystonia parkinsonism. How further genes link to the same pathway remains to be established.CrossRefPubMedGoogle Scholar
  63. 63.
    Schneider SA, Hardy J, Bhatia KP: Iron accumulation in syndromes of neurodegeneration with brain accumulation—causative or consequential? J Neurol Neurosurg Psychiatry 2009, 80:589–590.CrossRefPubMedGoogle Scholar
  64. 64.
    Najim al-Din AS, Wriekat A, Mubaidin A, et al.: Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia: Kufor-Rakeb syndrome. Acta Neurol Scand 1994, 89:347–352.CrossRefPubMedGoogle Scholar
  65. 65.
    Di Fonzo A, Chien HF, Socal M, et al.: ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 2007, 68:1557–1562.CrossRefPubMedGoogle Scholar
  66. 66.
    Ramirez A, Heimbach A, Grundemann J, et al.: Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 2006, 38:1184–1191.CrossRefPubMedGoogle Scholar
  67. 67.
    Williams DR, Hadeed A, al Din AS, et al.: Kufor Rakeb disease: autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov Disord 2005, 20:1264–1271.CrossRefPubMedGoogle Scholar
  68. 68.
    Schneider SA, Paisan-Ruiz C, Quinn N, et al.: ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord 2010, 25:979–984.CrossRefPubMedGoogle Scholar
  69. 69.
    Hampshire DJ, Roberts E, Crow Y, et al.: Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36. J Med Genet 2001, 38:680–682.CrossRefPubMedGoogle Scholar
  70. 70.
    Chinnery PF, Curtis AR, Fey C, et al.: Neuroferritinopathy in a French family with late onset dominant dystonia. J Med Genet 2003, 40:e69.CrossRefPubMedGoogle Scholar
  71. 71.
    Chinnery PF, Crompton DE, Birchall D, et al.: Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation. Brain 2007, 130(Pt 1):110–119.PubMedGoogle Scholar
  72. 72.
    Shojaee S, Sina F, Banihosseini SS, et al.: Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am J Hum Genet 2008, 82:1375–1384.CrossRefPubMedGoogle Scholar
  73. 73.
    Kurian MA, Zhen J, Cheng SY, et al.: Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J Clin Invest 2009, 119:1595–1603.PubMedGoogle Scholar
  74. 74.
    Ritz K, Groen JL, Kruisdijk JJ, et al.: Screening for dystonia genes DYT1, 11 and 16 in patients with writer’s cramp. Mov Disord 2009, 24:1390–1392.CrossRefPubMedGoogle Scholar
  75. 75.
    Patel RC, Sen GC: PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J 1998, 17:4379–4390.CrossRefPubMedGoogle Scholar
  76. 76.
    Lee LV, Pascasio FM, Fuentes FD, Viterbo GH: Torsion dystonia in Panay, Philippines. Adv Neurol 1976, 14:137–151.PubMedGoogle Scholar
  77. 77.
    Wilhelmsen KC, Weeks DE, Nygaard TG, et al.: Genetic mapping of “Lubag” (X-linked dystonia-parkinsonism) in a Filipino kindred to the pericentromeric region of the X chromosome. Ann Neurol 1991, 29:124–131.CrossRefPubMedGoogle Scholar
  78. 78.
    Evidente VG, Advincula J, Esteban R, et al.: Phenomenology of “Lubag” or X-linked dystonia-parkinsonism. Mov Disord 2002, 17:1271–1277.CrossRefPubMedGoogle Scholar
  79. 79.
    Evidente VG, Nolte D, Niemann S, et al.: Phenotypic and molecular analyses of X-linked dystonia-parkinsonism (“lubag”) in women. Arch Neurol 2004, 61:1956–1959.CrossRefPubMedGoogle Scholar
  80. 80.
    Waters CH, Takahashi H, Wilhelmsen KC, et al.: Phenotypic expression of X-linked dystonia-parkinsonism (lubag) in two women. Neurology 1993, 43:1555–1558.PubMedGoogle Scholar
  81. 81.
    Lee LV, Maranon E, Demaisip C, et al.: The natural history of sex-linked recessive dystonia parkinsonism of Panay, Philippines (XDP). Parkinsonism Relat Disord 2002, 9:29–38.CrossRefPubMedGoogle Scholar
  82. 82.
    Waters CH, Faust PL, Powers J, et al.: Neuropathology of lubag (x-linked dystonia parkinsonism). Mov Disord 1993, 8:387–390.CrossRefPubMedGoogle Scholar
  83. 83.
    Lee LV, Kupke KG, Caballar-Gonzaga F, et al.: The phenotype of the X-linked dystonia-parkinsonism syndrome. An assessment of 42 cases in the Philippines. Medicine (Baltimore) 1991, 70:179–187.Google Scholar
  84. 84.
    Evidente VG, Lyons MK, Wheeler M, et al.: First case of X-linked dystonia-parkinsonism (“Lubag”) to demonstrate a response to bilateral pallidal stimulation. Mov Disord 2007, 22:1790–1793.CrossRefPubMedGoogle Scholar
  85. 85.
    Martinez-Torres I, Limousin P, Tisch S, et al.: Early and marked benefit with GPi DBS for Lubag syndrome presenting with rapidly progressive life-threatening dystonia. Mov Disord 2009, 24:1710–1712.CrossRefPubMedGoogle Scholar
  86. 86.
    Makino S, Kaji R, Ando S, et al.: Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet 2007, 80:393–406.CrossRefPubMedGoogle Scholar
  87. 87.
    de Carvalho AP, Sweadner KJ, Penniston JT, et al.: Mutations in the Na+/K+-ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 2004, 43:169–175.CrossRefGoogle Scholar
  88. 88.
    Brashear A, Butler IJ, Ozelius LJ, et al.: Rapid-onset dystonia-parkinsonism: a report of clinical, biochemical, and genetic studies in two families. Adv Neurol 1998, 78:335–339.PubMedGoogle Scholar
  89. 89.
    • Brashear A, Dobyns WB, de Carvalho AP, et al.: The phenotypic spectrum of rapid-onset dystonia-parkinsonism (RDP) and mutations in the ATP1A3 gene. Brain 2007, 130(Pt 3):828–835. This paper described the phenotypic spectrum of rapid-onset dystonia parkinsonism in patients with molecularly proven ATP13A2 mutations.CrossRefPubMedGoogle Scholar
  90. 90.
    Anheim M, Lagier-Tourenne C, Stevanin G, et al.: SPG11 spastic paraplegia. A new cause of juvenile parkinsonism. J Neurol 2009, 256:104–108.Google Scholar
  91. 91.
    Stevanin G, Azzedine H, Denora P, et al.: Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain 2008, 131:772–784.CrossRefPubMedGoogle Scholar
  92. 92.
    Paisan-Ruiz C, Guevara R, Federoff M, et al.: Early-onset L-dopa-responsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and Spatacsin mutations. Mov Disord 2010, in press.Google Scholar
  93. 93.
    Denora PS, Schlesinger D, Casali C, et al.: Screening of ARHSP-TCC patients expands the spectrum of SPG11 mutations and includes a large scale gene deletion. Hum Mutat 2009, 30:E500–E519.CrossRefPubMedGoogle Scholar
  94. 94.
    Stevanin G, Santorelli FM, Azzedine H, et al.: Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet 2007, 39:366–372.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Sobell Department for Motor Neuroscience and Movement Disorders, Institute of NeurologyUniversity College LondonLondonUK
  2. 2.Section of Clinical and Molecular Neurogenetics at the Department of NeurologyUniversity LuebeckLuebeckGermany

Personalised recommendations