Skip to main content

Advertisement

Log in

A Diagnostic Algorithm for Metabolic Myopathies

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Metabolic myopathies comprise a clinically and etiologically diverse group of disorders caused by defects in cellular energy metabolism, including the breakdown of carbohydrates and fatty acids to generate adenosine triphosphate, predominantly through mitochondrial oxidative phosphorylation. Accordingly, the three main categories of metabolic myopathies are glycogen storage diseases, fatty acid oxidation defects, and mitochondrial disorders due to respiratory chain impairment. The wide clinical spectrum of metabolic myopathies ranges from severe infantile-onset multisystemic diseases to adult-onset isolated myopathies with exertional cramps. Diagnosing these diverse disorders often is challenging because clinical features such as recurrent myoglobinuria and exercise intolerance are common to all three types of metabolic myopathy. Nevertheless, distinct clinical manifestations are important to recognize as they can guide diagnostic testing and lead to the correct diagnosis. This article briefly reviews general clinical aspects of metabolic myopathies and highlights approaches to diagnosing the relatively more frequent subtypes (Fig. 1).

Clinical algorithm for patients with exercise intolerance in whom a metabolic myopathy is suspected. CK—creatine kinase; COX—cytochrome c oxidase; CPT—carnitine palmitoyl transferase; cyt b—cytochrome b; mtDNA—mitochondrial DNA; nDNA—nuclear DNA; PFK—phosphofructokinase; PGAM—phosphoglycerate mutase; PGK—phosphoglycerate kinase; PPL—myophosphorylase; RRF—ragged red fibers; TFP—trifunctional protein deficiency; VLCAD—very long-chain acyl–coenzyme A dehydrogenase

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Darras BT, Friedman NR: Metabolic myopathies: a clinical approach: part I. Pediatr Neurol 2000, 22:87–97.

    Article  CAS  PubMed  Google Scholar 

  2. • van Adel BA, Tarnopolsky MA: Metabolic myopathies: update 2009. J Clin Neuromuscul Dis 2009, 10:97–121. This article reviews the key clinical features, diagnostic tests, and treatment recommendations for the more common metabolic myopathies.

    Article  PubMed  Google Scholar 

  3. DiMauro S, Lamperti C: Muscle glycogenoses. Muscle Nerve 2001, 24:984–999.

    Article  CAS  Google Scholar 

  4. Tein I: Neonatal metabolic myopathies. Semin Perinatol 1999, 23:125–151.

    CAS  Google Scholar 

  5. Eymard B, Laforêt P: Metabolic myopathies in adulthood. Features and clues for diagnosis [in French]. Rev Med Interne 2001, 22:328–337.

    Google Scholar 

  6. Spiegel R, Gomez EA, Akman HO, et al.: Myopathic form of phosphoglycerate kinase (PGK) deficiency: a new case and pathogenic considerations. Neuromuscul Disord 2009, 19:207–211.

    Article  PubMed  Google Scholar 

  7. Stojkovic T, Vissing J, Petit F, et al.: Muscle glycogenosis due to phosphoglucomutase 1 deficiency. N Engl J Med 2009, 23:425–427.

    Article  Google Scholar 

  8. Haller RG: Treatment of McArdle disease. Arch Neurol 2000, 57:923–924.

    Article  CAS  PubMed  Google Scholar 

  9. Haller RG, Vissing J: Spontaneous ‘second wind’ and glucose-induced second ‘second wind’ in McArdle disease: oxidative mechanisms. Arch Neurol 2002, 59:1395–1402.

    Article  PubMed  Google Scholar 

  10. Taivassalo T, Jensen TD, Kennaway N, et al.: The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain 2003, 126:413–423.

    Article  PubMed  Google Scholar 

  11. Ørngreen MC, Schelhaas HJ, Jeppesen TD, et al.: Is muscle glycogenolysis impaired in X-linked phosphorylase b kinase deficiency? Neurology 2008, 70:1876–1882.

    Article  PubMed  Google Scholar 

  12. Deschauer M Wieser T, Zierz S: Muscle carnitine palmitoyltransferase II deficiency: clinical and molecular genetic features and diagnostic aspects. Arch Neurol 2005, 62:37–41

    Article  PubMed  Google Scholar 

  13. Ørngreen MC, Dunø M, Ejstrup R, et al.: Fuel utilization in subjects with carnitine palmitoyl-transferase 2 gene mutations. Ann Neurol 2005, 57:60–66.

    Article  PubMed  Google Scholar 

  14. Haller RG, Vissing J: No spontaneous second wind in muscle phosphofructokinase deficiency. Neurology 2004, 62:82–86.

    CAS  PubMed  Google Scholar 

  15. Vissing J, Haller RG: The effect of oral sucrose on exercise tolerance in patients with McArdle’s disease. N Engl J Med 2003, 349:2503–2509.

    Article  CAS  PubMed  Google Scholar 

  16. Vissing J, Quistorff B, Haller RG: Effect of fuels on exercise capacity in muscle phosphoglycerate mutase deficiency. Arch Neurol 2005, 62:1440–1443.

    Article  PubMed  Google Scholar 

  17. Toscano A, Musumeci O: Tarui disease and distal glycogenoses: clinical and genetic update. Acta Myol 2007, 26:105–107.

    CAS  PubMed  Google Scholar 

  18. Beutler E: PGK deficiency. Br J Haematol 2007, 136:3–11.

    Article  CAS  Google Scholar 

  19. Tsujino S, Nonaka I, DiMauro S: Glycogen storage myopathies. Neurol Clin 2000, 18:125–150.

    CAS  Google Scholar 

  20. Regelsberger G, Höftberger R, Pickl WF, et al.: Danon disease: case report and detection of new mutation. J Inherit Metab Dis 2009 Jul 7 (Epub ahead of print).

  21. Klein CJ, Boes CJ, Chapin JE, et al.: Adult polyglucosan body disease: case description of an expanding genetic and clinical syndrome. Muscle Nerve 2004, 29:323–328.

    Article  CAS  PubMed  Google Scholar 

  22. Noel N, Flanagan JM, Ramirez Bajo MJ, et al.: Two new phosphoglycerate kinase mutations associated with chronic haemolytic anaemia and neurological dysfunction in two patients from Spain. J Haematol 2006, 132:523–529.

    Google Scholar 

  23. Shen J, Bao Y, Liu HM, et al.: Mutations in exon 3 of the glycogen debranching enzyme gene are associated with glycogen storage disease type III that is differentially expressed in liver and muscle. J Clin Invest 1996, 98:352–357.

    Article  CAS  PubMed  Google Scholar 

  24. Longo N, Amat di San Filippo C, Pasquali M: Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet 2006, 142:77–85.

    Google Scholar 

  25. • Bruno C, DiMauro S: Lipid storage myopathies. Curr Opin Neurol 2008, 21:601–606. This article provides an excellent update on lipid storage myopathies.

    Article  CAS  PubMed  Google Scholar 

  26. DiMauro S, DiMauro PM: Muscle carnitine palmityltransferase deficiency and myoglobinuria. Science 1973, 182:929–931.

    Article  CAS  PubMed  Google Scholar 

  27. Hamano H, Shinohara Y, Takizawa S, et al.: Very-long-chain acyl-CoA dehydrogenase deficiency presenting with recurrent rhabdomyolysis in an adult. Rinsho Shinkeigaku 2003, 43:253–257.

    PubMed  Google Scholar 

  28. Curcoy A, Olsen RK, Ribes A, et al.: Late-onset form of beta-electron transfer flavoprotein deficiency. Mol Genet Metab 2003, 78:247–249.

    Article  CAS  PubMed  Google Scholar 

  29. Horvath R, Schneiderat P, Schoser BG, et al.: Coenzyme Q10 deficiency and isolated myopathy. Neurology 2006, 66:253–255.

    Article  CAS  PubMed  Google Scholar 

  30. • Gempel K, Topaloglu H, Talim B, et al.: The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 2007, 130:2037–2044. This is the first documentation of ETF-dehydrogenase mutation riboflavin-responsive MADD, indicating that this disorder and the myopathic form of CoQ 10 deficiency may be allelic diseases.

    Article  PubMed  Google Scholar 

  31. Elston T, Wang H, Oster G: Energy transduction in ATP synthase. Nature 1998, 391:510–513.

    CAS  Google Scholar 

  32. Noji H, Yoshida M: The rotary machine of the cell, ATP synthase. J Biol Chem 2001, 276:1665–1668.

    Article  CAS  PubMed  Google Scholar 

  33. • DiMauro S, Schon E: Mitochondrial disorders in the nervous system. Ann Rev Neurosci 2008, 31:91–123. This is an excellent, comprehensive review of mitochondrial diseases.

    Article  CAS  PubMed  Google Scholar 

  34. Suomalainen A, Kaukonen J: Diseases caused by nuclear genes affecting mtDNA stability. Am J Med Genet 2001, 106:53–61.

    Article  CAS  PubMed  Google Scholar 

  35. Spinazzola A, Zeviani M: Disorders of nuclear-mitochondrial intergenomic signaling. Biosci Rep 2007, 27:39–51.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu X, Peng X, Guan MX, et al.: Pathogenic mutations of nuclear genes associated with mitochondrial disorders. Acta Biochim Biophys Sin (Shanghai) 2009, 41:179–187.

    Article  CAS  Google Scholar 

  37. Rowland LP, Blake DM, Hirano M, et al.: Clinical syndromes associated with ragged red fibers. Rev Neurol 1991, 147:467–473.

    CAS  PubMed  Google Scholar 

  38. Zeviani M, Moraes CT, DiMauro S, et al.: Deletions of mitochondrial DNA in Kearns-Sayre syndrome. Neurology 1998, 51:1525–1533.

    PubMed  Google Scholar 

  39. Sproule DM, Kaufmann P: Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann N Y Acad Sci 2008, 1142:133–158.

    Article  CAS  PubMed  Google Scholar 

  40. Goto Y, Nonaka I, Horai S: A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1990, 348:651–653.

    Article  CAS  PubMed  Google Scholar 

  41. Mehrazin M, Shanske S, Kaufmann P, et al.: Longitudinal changes of mtDNA A3243G mutation load and level of functioning in MELAS. Am J Med Genet A 2009, 149:584–587.

    Google Scholar 

  42. McDonnell MT, Schaefer AM, Blakely EL: Noninvasive diagnosis of the 3243A > G mitochondrial DNA mutation using urinary epithelial cells. Eur J Hum Genet 2004, 12:778–781.

    Article  CAS  PubMed  Google Scholar 

  43. Shanske S: Varying loads of the mitochondrial DNA A3243G mutation in different tissues: implications for diagnosis. Am J Med Genet 2004, 130:134–137.

    Article  Google Scholar 

  44. Marotta R, Reardon K, McKelvie PA, et al.: Association of the MELAS m.3243A > G mutation with myositis and the superiority of urine over muscle, blood and hair for mutation detection. J Clin Neurosci 2009, 16:1223–1225.

    Article  CAS  PubMed  Google Scholar 

  45. Wiedemann FR, Bartels C, Kirches E, et al.: Unusual presentations of patients with the mitochondrial MERRF mutation A8344G. Clin Neurol Neurosurg 2008, 110:859–863.

    Article  PubMed  Google Scholar 

  46. Melone MA, Tessa A, Petrini S, et al.: Revelation of a new mitochondrial DNA mutation (G12147A) in a MELAS/MERFF phenotype. Arch Neurol 2004, 61:269–272.

    Article  PubMed  Google Scholar 

  47. Andreu AL, Hanna MG, Reichmann H, et al.: Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med 1999, 341:1037–1044.

    Article  CAS  PubMed  Google Scholar 

  48. Bortot B, Barbi E, Biffi S,et al.: Two novel cosegregating mutations in tRNAMet and COX III, in a patient with exercise intolerance and autoimmune polyendocrinopathy. Mitochondrion 2009, 9:123–129.

    Article  CAS  PubMed  Google Scholar 

  49. Pulkes T, Liolitsa D, Wills AJ, et al.: Nonsense mutations in mitochondrial DNA associated with myalgia and exercise intolerance. Neurology 2005, 64:1091–1092.

    CAS  PubMed  Google Scholar 

  50. Andreu AL, Tanji K, Bruno C, et al.: Exercise intolerance due to a nonsense mutation in the mtDNA ND4 gene. Ann Neurol 1999, 45:820–823.

    Article  CAS  PubMed  Google Scholar 

  51. Downham E, Winterthun S, Nakkestad HL, et al.: A novel mitochondrial ND5 (MTND5) gene mutation giving isolated exercise intolerance. Neuromusc Disord 2008, 18:310–314.

    Article  PubMed  Google Scholar 

  52. McFarland R, Taylor RW, Chinnery PF, et al.: A novel sporadic mutation in cytochrome c oxidase subunit II as a cause of rhabdomyolysis. Neuromusc Disord 2004, 14:162–166.

    Article  PubMed  Google Scholar 

  53. Hirano M: Metabolic myopathies. In Neurobiology of Disease. Edited by Gilman S. San Diego, CA: Elsevier Academic Press; 2007:947–956.

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Hirano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berardo, A., DiMauro, S. & Hirano, M. A Diagnostic Algorithm for Metabolic Myopathies. Curr Neurol Neurosci Rep 10, 118–126 (2010). https://doi.org/10.1007/s11910-010-0096-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-010-0096-4

Keywords

Navigation