Update on medication-induced peripheral neuropathy



Despite improvements in the identification of causes of peripheral neuropathy, idiopathic polyneuropathy remains common. Medication and toxic neuropathy account for a small but important percentage of potentially preventable or reversible causes of neuropathy. New drugs that can induce neuropathy have been approved over the past several years, including the anticancer agents bortezomib, ixabepilone, and oxaliplatin. We review the neurotoxic effects of tumor necrosis factor-α blockers infliximab and etanercept, the inflammatory arthritis agent leflunomide, and the antibiotic linezolid. The controversy of statin-induced neuropathy continues to unfold; the large Fremantle Diabetes Study has suggested that statins may have neuroprotective effects. Dichloroacetate is a promising agent for lactic acidosis-associated disorders, but toxic neuropathy is a treatment-limiting factor. We also describe a progressive inflammatory neuropathy in swine slaughterhouse workers that appears to be a toxin-induced immune response.

References and Recommended Reading

  1. 1.
    Jain KK: Drug-induced peripheral neuropathies. In: Drug-Induced Neurological Disorders, edn 2. Edited by Jain KK. Seattle: Hogrefe & Huber; 2001:263–294.Google Scholar
  2. 2.
    Pratt RW, Weimer LH: Medication and toxin-induced peripheral neuropathy. Semin Neurol 2005, 25:204–216.PubMedCrossRefGoogle Scholar
  3. 3.
    Chaudhry V, Chaudhry M, Crawford TO, et al.: Toxic neuropathy in patients with pre-existing neuropathy. Neurology 2003, 60:337–340.PubMedCrossRefGoogle Scholar
  4. 4.
    Graf WD, Chance PF, Lensch MW, et al.: Severe vincristine neuropathy in Charcot-Marie-Tooth disease type 1A. Cancer 1996, 77:1356–1362.PubMedCrossRefGoogle Scholar
  5. 5.
    Prezant TR, Agapian JV, Bohlman MC, et al.: Mitochondrial ribosomal RNA mutation associated with both antibiotic induced and non-syndromic deafness. Nat Genet 1993; 4:289–294.PubMedCrossRefGoogle Scholar
  6. 6.
    Weimer LH: Medication-induced peripheral neuropathy. Curr Neurol Neurosci Rep 2003, 3:86–92.PubMedCrossRefGoogle Scholar
  7. 7.
    El-Cheikh J, Stoppa AM, Bouabdallah R, et al.: Features and risk factors of peripheral neuropathy during treatment with bortezomib for advanced multiple myeloma. Clin Lymphoma Myeloma 2008, 8:146–152.PubMedCrossRefGoogle Scholar
  8. 8.
    Argyriou AA, Iconomou G, Kalofonos HP: Bortezomibinduced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 2008, 112:1593–1599.PubMedCrossRefGoogle Scholar
  9. 9.
    Jackson G, Einsele H, Moreau P, Miguel JS: Bortezomib, a novel proteasome inhibitor, in the treatment of hematologic malignancies. Cancer Treat Rev 2005, 3:591–602.CrossRefGoogle Scholar
  10. 10.
    Swain SM, Arezzo JC: Neuropathy associated with microtubule inhibitors: diagnosis, incidence, and management. Clin Adv Hematol Oncol 2008, 6:455–467.PubMedGoogle Scholar
  11. 11.
    Bhushan S, Walko CM: Ixabepilone: a new antimitotic for the treatment of metastatic breast cancer. Ann Pharmacother 2008, 42:1252–1261.PubMedCrossRefGoogle Scholar
  12. 12.
    Cortes J, Baselga J: Targeting the microtubules in breast cancer beyond taxanes: the epothilones. Oncologist 2007, 12:271–280.PubMedCrossRefGoogle Scholar
  13. 13.
    Roché H, Yelle L, Cognetti F, et al.: Phase II clinical trial of ixabepilone (BMS-247550), an epothilone B analog, as first-line therapy in patients with metastatic breast cancer previously treated with anthracycline chemotherapy. J Clin Oncol 2007, 25:3415–3420.PubMedCrossRefGoogle Scholar
  14. 14.
    Thomas E, Tabernero J, Fornier M, et al.: Phase II clinical trial of ixabepilone (BMS-247550), an epothilone b analog, in patients with taxane-resistant metastatic breast cancer. J Clin Oncol 2007, 25:3399–3406.PubMedCrossRefGoogle Scholar
  15. 15.
    Perez EA, Lerzo G, Pivot X, et al.: Efficacy and safety of ixabepilone (BMS-247550), a novel epothilone analog, in a phase II study of patients with advanced breast cancer resistant to an anthracycline, a taxane, and capecitabine. J Clin Oncol 2007, 25:3407–3414.PubMedCrossRefGoogle Scholar
  16. 16.
    Denduluri N, Low JA, Lee JJ, et al.: Phase II trial of ixabepilone, an epothilone B analog, in patients with metastatic breast cancer previously untreated with taxanes. J Clin Oncol 2007, 25:3421–3427.PubMedCrossRefGoogle Scholar
  17. 17.
    Thomas E, Gomez HL, Li RK, et al.: Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J Clin Oncol 2007, 25:5210–5217.PubMedCrossRefGoogle Scholar
  18. 18.
    Lehky TJ, Leonard GD, Wilson RH, et al.: Oxaliplat-ininduced neurotoxicity: acute hyperexcitability and chronic neuropathy. Muscle Nerve 2004, 29:387–392.PubMedCrossRefGoogle Scholar
  19. 19.
    Gamelin L, Boisdron-Celle M, Delva R, et al.: Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: a retrospective study of 161 patients receiving oxaliplatin combined with 5-fluorouracil and leucovorin for advanced colorectal cancer. Clin Cancer Res 2004, 10:4055–4061.PubMedCrossRefGoogle Scholar
  20. 20.
    Gamelin L, Boisdron-Celle M, Morel A, et al.: Oxaliplatin- related neurotoxicity: interest of calcium-magnesium infusion and no impact on its efficacy. J Clin Oncol 2008, 26:1188–1189.PubMedCrossRefGoogle Scholar
  21. 21.
    Wolf S, Barton D, Kottschade L, et al.: Chemotherapyinduced peripheral neuropathy: prevention and treatment strategies. Eur J Cancer 2008, 44:1507–1515.PubMedCrossRefGoogle Scholar
  22. 22.
    Stübgen JP: Tumor necrosis factor-alpha antagonists and neuropathy. Muscle Nerve 2008, 37:281–292.PubMedCrossRefGoogle Scholar
  23. 23.
    Latov N, Sherman WH: Improvement with etanercept (Enbrel) in chronic inflammatory demyelinating polyneuropathy [abstract]. Ann Neurol 2000, 48:473.Google Scholar
  24. 24.
    Chin RL, Sherman WH, Sander HW, et al.: Etanercept (Enbrel) therapy for chronic inflammatory demyelinating polyneuropathy. J Neurol Sci 2003, 210:19–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Robinson WH, Genovese MC, Moreland LW: Demyelinating and neurologic events reported in association with tumor necrosis factor alpha antagonism: by what mechanisms could tumor necrosis factor alpha antagonists improve rheumatoid arthritis but exacerbate multiple sclerosis? Arthritis Rheum 2001, 44:1977–1983.PubMedCrossRefGoogle Scholar
  26. 26.
    Shin IS, Baer AN, Kwon HJ, et al.: Guillain-Barré and Miller Fisher syndromes occurring with tumor necrosis factor antagonist therapy. Arthritis Rheum 2006, 54:1429–1434.PubMedCrossRefGoogle Scholar
  27. 27.
    Richez C, Blanco P, Lagueny A, et al.: Neuropathy resembling CIDP in patients receiving tumor necrosis factor-alpha blockers. Neurology 2005, 64:1468–1470.PubMedGoogle Scholar
  28. 28.
    Jarand J, Zochodne DW, Martin LO, Voll C: Neurological complications of infliximab. J Rheumatol 2006, 33:1018–1020.PubMedGoogle Scholar
  29. 29.
    Tektonidou MG, Serelis J, Skopouli FN: Peripheral neuropathy in two patients with rheumatoid arthritis receiving infliximab treatment. Clin Rheumatol 2007, 26:258–260.PubMedCrossRefGoogle Scholar
  30. 30.
    Singer OC, Otto B, Steinmetz H, Ziemann U: Acute neuropathy with multiple conduction blocks after TNF monoclonal antibody therapy. Neurology 2004, 63:1754.PubMedGoogle Scholar
  31. 31.
    Rodriguez-Escalera C, Belzunegui J, Lopez-Dominguez L, et al.: Multifocal motor neuropathy with conduction block in a patient with rheumatoid arthritis on infliximab therapy. Rheumatology 2005, 44:132–133.PubMedCrossRefGoogle Scholar
  32. 32.
    Birnbaum J: Infliximab-associated neuropathy in RA patients—the importance of considering the diagnosis of mononeuritis multiplex. Clin Rheumatol 2007, 26:281–282.PubMedCrossRefGoogle Scholar
  33. 33.
    Carulli MT, Davies UM: Peripheral neuropathy: an unwanted effect of leflunomide? Rheumatology (Oxford) 2002, 41:952–953.CrossRefGoogle Scholar
  34. 34.
    Bonnel RA, Graham DJ: Peripheral neuropathy in patients treated with leflunomide. Clin Pharmacol Ther 2004, 75:580–585.PubMedCrossRefGoogle Scholar
  35. 35.
    Metzler C, Arlt AC, Gross WL, Brandt J: Peripheral neuropathy in patients with systemic rheumatic diseases treated with leflunomide. Ann Rheum Dis 2005, 64:1798–1800.PubMedCrossRefGoogle Scholar
  36. 36.
    Bharadwaj A, Haroon N: Peripheral neuropathy in patients on leflunomide. Rheumatology (Oxford) 2004, 43:934.CrossRefGoogle Scholar
  37. 37.
    Martin K, Bentaberry F, Dumoulin C, et al.: Neuropathy associated with leflunomide: a case series. Ann Rheum Dis 2005, 64:649–650.PubMedCrossRefGoogle Scholar
  38. 38.
    Kho LK, Kermode AG: Leflunomide-induced peripheral neuropathy. J Clin Neurosci 2007, 14:179–181.PubMedCrossRefGoogle Scholar
  39. 39.
    Richards BL, Spies J, McGill N, et al.: Effect of leflunomide on the peripheral nerves in rheumatoid arthritis. Intern Med J 2007, 37:101–107.PubMedCrossRefGoogle Scholar
  40. 40.
    Martin K, Bentaberry F, Dumoulin C, et al.: Peripheral neuropathy associated with leflunomide: is there a risk patient profile? Pharmacoepidemiol Drug Saf 2007, 16:74–78.PubMedCrossRefGoogle Scholar
  41. 41.
    Jacobs MB: HMG-CoA reductase inhibitor therapy and peripheral neuropathy [letter]. Ann Intern Med 1994, 120:970.PubMedGoogle Scholar
  42. 42.
    Ahmad S: Lovastatin and peripheral neuropathy. Am Heart J 1995, 130:1321.PubMedCrossRefGoogle Scholar
  43. 43.
    Phan T, McLeod JG, Pollard JD, et al.: Peripheral neuropathy associated with simvastatin. J Neurol Neurosurg Psychiatry 1995, 58:625–628.PubMedCrossRefGoogle Scholar
  44. 44.
    Jeppesen U, Gaist D, Smith T, Sindrup SH: Statins and peripheral neuropathy. Eur J Clin Pharmacol 1999, 54:835–838.PubMedCrossRefGoogle Scholar
  45. 45.
    Lo YL, Leoh TH, Loh LM, Tan CE: Statin therapy and small fibre neuropathy: a serial electrophysiological study. J Neurol Sci 2003, 208:105–108.PubMedCrossRefGoogle Scholar
  46. 46.
    Walravens PA, Greene C, Seerman FE: Lovastatin, isoprenes, and myopathy. Lancet 1989, 2:1097–1098.PubMedCrossRefGoogle Scholar
  47. 47.
    Gaist D, Jeppesen U, Andersen M, et al.: Statins and risk of polyneuropathy: a case-control study. Neurology 2002, 58:1333–1337.PubMedGoogle Scholar
  48. 48.
    Donaghy M: Assessing the risk of drug-induced neurologic disorders. Statins and neuropathy. Neurology 2002, 58:1321–1322.PubMedGoogle Scholar
  49. 49.
    Anderson JL, Muhlestein JB, Bair TL, et al.: Do statins increase the risk of idiopathic polyneuropathy? Am J Cardiol 2005, 95:1097–1099.PubMedCrossRefGoogle Scholar
  50. 50.
    Davis TM, Yeap BB, Davis WA, Bruce DG: Lipid-lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Fremantle Diabetes Study. Diabetologia 2008, 51:562–566.PubMedCrossRefGoogle Scholar
  51. 51.
    Ii M, Nishimura H, Kusano KF, et al.: Neuronal nitric oxide synthase mediates statin-induced restoration of vasa nervorum and reversal of diabetic neuropathy. Circulation 2005, 112:93–102.PubMedCrossRefGoogle Scholar
  52. 52.
    Sarkey JP, Richards MP, Stubbs EB Jr: Lovastatin attenuates nerve injury in an animal model of Guillain-Barré syndrome. J Neurochem 2007, 100:1265–1277.PubMedCrossRefGoogle Scholar
  53. 53.
    Spruijt L, Naviaux RK, McGowan KA, et al.: Nerve conduction changes in patients with mitochondrial diseases treated with dichloroacetate. Muscle Nerve 2001, 24:916–924.PubMedCrossRefGoogle Scholar
  54. 54.
    Kaufmann P, Engelstad K, Wei Y, et al.: Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology 2006, 66:324–330.PubMedCrossRefGoogle Scholar
  55. 55.
    Anselm IA, Darras BT: Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology 2006, 67:1313.PubMedCrossRefGoogle Scholar
  56. 56.
    Stacpoole PW, Gilbert LR, Neiberger RE, et al.: Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate. Pediatrics 2008, 121:e1223–e1228.PubMedCrossRefGoogle Scholar
  57. 57.
    Felitsyn N, Stacpoole PW, Notterpek L: Dichloroacetate causes reversible demyelination in vitro: potential mechanism for its neuropathic effect. J Neurochem 2007, 100:429–436.PubMedCrossRefGoogle Scholar
  58. 58.
    Felitsyn N, McLeod C, Shroads AL, et al.: The heme precursor delta-aminolevulinate blocks peripheral myelin formation. J Neurochem 2008, 106:2068–2079.PubMedGoogle Scholar
  59. 59.
    Heckmann JG, Dütsch M, Schwab S: Linezolid-associated small-fiber neuropathy. J Peripher Nerv Syst 2008, 13:157–158.PubMedCrossRefGoogle Scholar
  60. 60.
    Chao CC, Sun HY, Chang YC, Hsieh ST: Painful neuropathy with skin denervation after prolonged use of linezolid. J Neurol Neurosurg Psychiatry 2008, 79:97–99.PubMedCrossRefGoogle Scholar
  61. 61.
    Rho JP, Sia IG, Crum BA, et al.: Linezolid-associated peripheral neuropathy. Mayo Clin Proc 2004, 9:927–930.Google Scholar
  62. 62.
    Narita M, Tsuji BT, Yu VL: Linezolid-associated peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome. Pharmacotherapy 2007, 27:1189–1197.PubMedCrossRefGoogle Scholar
  63. 63.
    Rucker JC, Hamilton SR, Bardenstein D, et al.: Linezolid-associated toxic optic neuropathy. Neurology 2006, 66:595–598.PubMedCrossRefGoogle Scholar
  64. 64.
    Zivkovic SA, Lacomis D: Severe sensory neuropathy associated with long-term linezolid use. Neurology 2005, 64:926–927.PubMedGoogle Scholar
  65. 65.
    Centers for Disease Control and Prevention (CDC): Investigation of progressive inflammatory neuropathy among swine slaughterhouse workers—Minnesota, 2007–2008. MMWR Morb Mortal Wkly Rep 2008, 57:122–124.Google Scholar

Copyright information

© Current Medicine Group LLC 2009

Authors and Affiliations

  1. 1.The Neurological InstituteNew YorkUSA

Personalised recommendations