Skip to main content

Advances in transcranial doppler ultrasonography

Abstract

Transcranial Doppler ultrasonography (TCD) is the only noninvasive real-time neuroimaging modality for the evaluation of characteristics of blood flow in basal intracerebral vessels that adds physiologic information to structural imaging. TCD has been rapidly evolving from a simple noninvasive diagnostic tool to an imaging modality with a broad spectrum of clinical applications. In acute stroke, TCD can provide rapid information about vascular stenosis and occlusion, the hemodynamic status of the cerebral circulation, and real-time monitoring of recanalization. Extended applications such as vasomotor reactivity testing, emboli monitoring, and right-to-left shunt detection help clinicians ascertain stroke mechanisms at the bedside, plan and monitor treatment, and determine prognosis. In the neurointensive care unit, TCD is useful for detecting increased intracranial pressure and confirming cerebral circulatory arrest. TCD is of established value for screening children with sickle cell disease and detecting and monitoring vasospasm after spontaneous subarachnoid hemorrhage.

This is a preview of subscription content, access via your institution.

References and Recommended Reading

  1. Fischer M, Pessin MS, Furlan AJ: ECASS: lessons for future thrombolytic trials. JAMA 1995, 333:1588–1593.

    Google Scholar 

  2. Masdeu JC, Irimia P, Asenbaum S, et al.: EFNS guideline on neuroimaging in acute stroke. Report of an EFNS task force. Eur J Neurol 2006, 13:1271–1283.

    PubMed  Article  CAS  Google Scholar 

  3. Alexandrov AV, Sloan MA, Wong LK, et al.: Practice standards for transcranial Doppler ultrasound: part I—test performance. J Neuroimaging 2007, 17:11–18.

    PubMed  Google Scholar 

  4. Qureshi AI, Alexandrov AV, Tegeler CH, et al.: Guidelines for screening of extracranial carotid artery disease: a statement for healthcare professionals from the multidisciplinary practice guidelines committee of the American Society of Neuroimaging; cosponsored by the Society of Vascular and Interventional Neurology. J Neuroimaging 2007, 17:19–47.

    PubMed  Article  Google Scholar 

  5. Christou I, Felberg RA, Demchuk AM, et al.: Accuracy parameters of a broad diagnostic battery for bedside transcranial Doppler to detect flow changes with internal carotid artery stenosis or occlusion. J Neuroimaging 2001, 11:236–242.

    PubMed  CAS  Google Scholar 

  6. Tsivgoulis G, Saqqur M, Sharma VK, et al.: Association of pretreatment blood pressure with tissue plasminogen activator-induced arterial recanalization in acute ischemic stroke. Stroke 2007, 38:961–966.

    PubMed  Article  CAS  Google Scholar 

  7. Feldmann E, Wilterdink JL, Kosinski A, et al.: The Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) trial. Neurology 2007, 68:2099–2106.

    PubMed  Article  CAS  Google Scholar 

  8. Sharma VK, Tsivgoulis G, Lao AY, Alexandrov AV: Role of transcranial Doppler ultrasonography in evaluation of patients with cerebrovascular disease. Curr Neurol Neurosci Rep 2007, 7:8–20.

    PubMed  Article  Google Scholar 

  9. Moehring MA, Spencer MP: Power M-mode Doppler (PMD) for observing cerebral blood flow and tracking emboli. Ultrasound Med Biol 2002, 28:49–57.

    PubMed  Article  Google Scholar 

  10. Alexandrov AV, Demchuk AM, Burgin WS: Insonation method and diagnostic flow signatures for transcranial power motion (M-mode) Doppler. J Neuroimaging 2002, 12:236–244.

    PubMed  Article  Google Scholar 

  11. Chernyshev OY, Garami Z, Calleja S, et al.: Yield and accuracy of urgent combined carotid/transcranial ultrasound testing in acute cerebral ischemia. Stroke 2005, 36:32–37.

    PubMed  Article  Google Scholar 

  12. Razumovsky AY, Gillard JH, Bryan RN, et al.: TCD, MRA, and MRI in acute cerebral ischemia. Acta Neurol Scand 1999, 99:65–76.

    PubMed  CAS  Google Scholar 

  13. Zanette EM, Fieschi C, Bozzao L, et al.: Comparison of cerebral angiography and transcranial Doppler sonography in acute stroke. Stroke 1989, 20:899–903.

    PubMed  CAS  Google Scholar 

  14. Demchuk AM, Burgin WS, Christou I, et al.: Thrombolysis in brain infarction (TIBI) transcranial Doppler flow grades predict clinical severity, early recovery, and mortality in patients treated with intravenous tissue plasminogen activator. Stroke 2001, 32:89–93.

    PubMed  CAS  Google Scholar 

  15. Tsivgoulis G, Sharma VK, Lao AY, et al.: Validation of transcranial Doppler with computed tomography angiography in acute cerebral ischemia. Stroke 2007, 38:1245–1249.

    PubMed  Article  Google Scholar 

  16. Powers WJ: Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 1991, 29:231–240.

    PubMed  Article  CAS  Google Scholar 

  17. Derdeyn CP, Khosla A, Videen TO, et al.: Severe hemodynamic impairment and border zone—region infarction. Radiology 2001, 220:195–201.

    PubMed  CAS  Google Scholar 

  18. Bozzao L, Fantozzi LM, Bastianello S, et al.: Early collateral blood supply and late parenchymal brain damage in patients with middle cerebral artery occlusion. Stroke 1989, 20:735–740.

    PubMed  CAS  Google Scholar 

  19. Kucinski T, Koch C, Eckert B, et al.: Collateral circulation is an independent radiological predictor of outcome after thrombolysis in acute ischaemic stroke. Neuroradiology 2003, 45:11–18.

    PubMed  CAS  Google Scholar 

  20. Molina CA, Alexandrov AV, Demchuk AM, et al.: Improving the predictive accuracy of recanalization on stroke outcome in patients treated with tissue plasminogen activator. Stroke 2004, 35:151–156.

    PubMed  Article  CAS  Google Scholar 

  21. Rha JH, Saver JL: The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke 2007, 38:967–973.

    PubMed  Article  Google Scholar 

  22. Alexandrov AV, Burgin SW, Demchuk AM, et al.: Speed of intracranial clot lysis with intravenous tissue plasminogen activator therapy: sonographic classification and short-term improvement. Circulation 2001, 103:2897–2902.

    PubMed  CAS  Google Scholar 

  23. Ribo M, Alvarez-Sabin J, Montaner J, et al.: Temporal profile of recanalization after intravenous tissue plasminogen activator: selecting patients for rescue reperfusion techniques. Stroke 2006, 37:1000–1004.

    PubMed  Article  CAS  Google Scholar 

  24. Christou I, Alexandrov AV, Burgin WS, et al.: Timing of recanalization after TPA therapy determined by transcranial Doppler correlates with clinical recovery from ischemic stroke. Stroke 2000, 31:1812–1816.

    PubMed  CAS  Google Scholar 

  25. North American Symptomatic Carotid Endarterectomy Trial Collaborators: Beneficial effect of carotid endarterectomy in symptomatic patients with high grade carotid stenosis. N Engl J Med 1991, 325:445–453.

    Google Scholar 

  26. Bornstein NM, Gur AY, Shifrin EG, Morag BA: The value of a combined transcranial Doppler and Diamox test in assessing intracerebral hemodynamics. In Cerebrovascular Ischemia: Investigation and Management. Edited by Caplan LR, Shifrin EG, Nicolaides AN, Moore WS. London: Med-Orion; 1996:143–148.

    Google Scholar 

  27. Bishop CC, Powell S, Insall M, et al.: Effect of internal carotid artery occlusion on middle cerebral artery blood flow at rest and in response to hypercapnia. Lancet 1986, 1(8483):710–712.

    PubMed  Article  CAS  Google Scholar 

  28. Ringelstein EB, Van Eyck S, Mertens I: Evaluation of cerebral vasomotor reactivity by various vasodilating stimuli: comparison of CO2 to acetazolamide. J Cereb Blood Flow Metab 1992, 12:162–168.

    PubMed  CAS  Google Scholar 

  29. Ringelstein EB: CO2-reactivity: dependence from collateral circulation and significance in symptomatic and asymptomatic patients. In Cerebrovascular Ischemia: Investigation and Management. Edited by Caplan LR, Shifrin EG, Nicolaides AN, Moore WS. London: Med-Orion; 1996:149–154.

    Google Scholar 

  30. Silvestrini M, Vernieri F, Pasqualetti P, et al.: Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA 2000, 283:2122–2127.

    PubMed  Article  CAS  Google Scholar 

  31. Mackinnon AD, Aaslid R, Markus HS: Long-term ambulatory monitoring for cerebral emboli using transcranial Doppler ultrasound. Stroke 2004, 35:73–78.

    PubMed  Article  Google Scholar 

  32. Markus HS, MacKinnon A: Asymptomatic embolization detected by Doppler ultrasound predicts stroke risk in symptomatic carotid artery stenosis. Stroke 2005, 36:971–975.

    PubMed  Article  Google Scholar 

  33. Markus HS, Droste DW, Kaps M, et al.: Dual antiplatelet therapy with clopidogrel and aspirin in symptomatic carotid stenosis evaluated using Doppler embolic signal detection: the Clopidogrel and Aspirin for Reduction of Emboli in Symptomatic Carotid Stenosis (CARESS) trial. Circulation 2005, 111:2233–2240.

    PubMed  Article  CAS  Google Scholar 

  34. Saqqur M, Dean N, Schebel M, et al.: Improved detection of microbubble signals using power M-mode Doppler. Stroke 2004, 35:e14–e17.

    PubMed  Article  Google Scholar 

  35. Chan KH, Miller JD, Dearden NM, et al.: The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe brain injury. J Neurosurg 1992, 77:55–61.

    PubMed  CAS  Article  Google Scholar 

  36. Homburg AM, Jakobsen M, Enevoldsen E: Transcranial Doppler recordings in raised intracranial pressure. Acta Neurol Scand 1993, 87:488–493.

    PubMed  CAS  Article  Google Scholar 

  37. Alexandrov AV, ed: Cerebrovascular Ultrasound in Stroke Prevention and Treatment. New York: Blackwell Publishing; 2004.

    Google Scholar 

  38. de Freitas GR, Andre C: Sensitivity of transcranial Doppler for confirming brain death: a prospective study of 270 cases. Acta Neurol Scand 2006, 113:426–432.

    PubMed  Article  Google Scholar 

  39. Lindegaard KF, Nornes H, Bakke SJ, et al.: Cerebral vasospasm diagnosis by means of angiography and blood velocity measurements. Acta Neurochir (Wien) 1987, 100:12–24.

    Article  Google Scholar 

  40. Sloan MA: Transcranial Doppler monitoring of vasospasm after subarachnoid hemorrhage. In Neurosonology. Edited by Tegeler CH, Babikian VL, Gomez CR. St Louis: Mosby; 1996:156–171.

    Google Scholar 

  41. Sloan MA, Alexandrov AV, Tegeler CH, et al.: Assessment: transcranial Doppler ultrasonography: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2004, 62:1468–1481.

    PubMed  CAS  Google Scholar 

  42. Adams RJ, McKie VC, Carl EM, et al.: Long-term stroke risk in children with sickle cell disease screened with transcranial Doppler. Ann Neurol 1997, 42:699–704.

    PubMed  Article  CAS  Google Scholar 

  43. Adams RJ, McKie VC, Hsu L, et al.: Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med 1998, 339:5–11.

    PubMed  Article  CAS  Google Scholar 

  44. Adams RJ, Brambilla D; Optimizing Primary Stroke Prevention in Sickle Cell Anemia (STOP 2) Trial Investigators: Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease. N Engl J Med 2005, 353:2769–2778.

    PubMed  Article  CAS  Google Scholar 

  45. Suchkova V, Siddiqi FN, Carstensen EL, et al.: Enhancement of fibrinolysis with 40-kHz ultrasound. Circulation 1998, 98:1030–1035.

    PubMed  CAS  Google Scholar 

  46. Alexandrov AV, Demchuk AM, Felberg RA, et al.: High rate of complete recanalization and dramatic clinical recovery during tPA infusion when continuously monitored with 2-MHz transcranial doppler monitoring. Stroke 2000, 31:610–614.

    PubMed  CAS  Google Scholar 

  47. Alexandrov AV, Molina CA, Grotta JC, et al.: Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Eng J Med 2004, 351:2170–2178.

    Article  CAS  Google Scholar 

  48. Daffertshofer M, Gass A, Ringleb P, et al.: Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia. Stroke 2005, 36:1441–1446.

    PubMed  Article  Google Scholar 

  49. Sonne C, Xie F, Lof J, et al.: Differences in definity and optison microbubble destruction rates at a similar mechanical index with different real-time perfusion systems. J Am Soc Echocardiogr 2003, 16:1178–1185.

    PubMed  Article  Google Scholar 

  50. Molina CA, Ribo M, Rubiera M, et al.: Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 2006, 37:425–429.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Sloan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsivgoulis, G., Alexandrov, A.V. & Sloan, M.A. Advances in transcranial doppler ultrasonography. Curr Neurol Neurosci Rep 9, 46–54 (2009). https://doi.org/10.1007/s11910-009-0008-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-009-0008-7

Keywords

  • Magnetic Resonance Angiography
  • Sickle Cell Disease
  • Acute Ischemic Stroke
  • Carotid Stenosis
  • Transcranial Doppler Ultrasonography