Skip to main content
Log in

Rethinking Alzheimer’s disease: The role of age-related changes

  • Invited Commentary
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Swift J. Gulliver’s Travels. 1726.

  2. Merritt HH: Textbook of Neurology. Philadelphia: Lea & Febiger; 1955.

    Google Scholar 

  3. Katzman R: Editorial: The prevalence and malignancy of Alzheimer disease. A major killer. Arch Neurol 1976, 33:217–218.

    PubMed  CAS  Google Scholar 

  4. Drachman DA: Aging of the brain, entropy and Alzheimer’s disease. Neurology 2006, 67:1340–1352.

    Article  PubMed  CAS  Google Scholar 

  5. Esiri MM, Hyman BT, Beyreuthe K, Masters CL: Ageing and dementia. In Greenfield’s Neuropathology, edn 6, vol 2. Edited by Graham DI, Lantos PL. London: Arnold; 1997:153–234.

    Google Scholar 

  6. Pakkenberg B, Pelvig D, Marner L, et al.: Aging and the human neocortex. Exp Gerontol 2003, 38:95–99.

    Article  PubMed  Google Scholar 

  7. Soderlund H, Nyberg L, Adolfsson R, et al.: High prevalence of white matter hyperintensities in normal aging: relation to blood pressure and cognition. Cortex 2003, 39:1093–1105.

    PubMed  Google Scholar 

  8. Bennett DA, Schneider JA, Arvanitakis Z, et al.: Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006, 66:1837–1844.

    Article  PubMed  CAS  Google Scholar 

  9. Wechsler D: The Wechsler Adult Intelligence Scale-Revised Manual. New York: Psychological Corporation; 1981.

    Google Scholar 

  10. Hebert LE, Scherr PA, Beckett LA, et al.: Age-specific incidence of Alzheimer’s disease in a community population. JAMA 1995, 273:1354–1359.

    Article  PubMed  CAS  Google Scholar 

  11. Mortimer JA, Snowdon DA, Markesbery WR: Head circumference, education and risk of dementia: findings from the Nun Study. J Clin Exp Neuropsychol 2003, 25:671–679.

    Article  PubMed  Google Scholar 

  12. Tang BL: Molecular genetic determinants of human brain size. Biochem Biophys Res Commun 2006, 345:911–916.

    Article  PubMed  CAS  Google Scholar 

  13. Corder EH, Saunders AM, Strittmatter WJ, et al.: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261:921–923.

    Article  PubMed  CAS  Google Scholar 

  14. Hayflick L: The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965, 37:614–636.

    Article  PubMed  CAS  Google Scholar 

  15. Arkus N: A mathematical model of cellular apoptosis and senescence through the dynamics of telomere loss. J Theor Biol 2005, 235:13–32.

    Article  PubMed  CAS  Google Scholar 

  16. Cho SG, Choi EJ: Apoptotic signaling pathways: caspases and stress-activated protein kinases. J Biochem Mol Biol 2002, 35:24–27.

    PubMed  CAS  Google Scholar 

  17. Gage FH, Ray J, Fisher LJ: Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 1995, 18:159–192.

    Article  PubMed  CAS  Google Scholar 

  18. Szilard L: On the nature of the aging process. Proc Natl Acad Sci U S A 1959, 45:30–45.

    Article  PubMed  CAS  Google Scholar 

  19. Orgel L: The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci U S A 1963, 49:517–521.

    Article  PubMed  CAS  Google Scholar 

  20. van Leeuwen FW, Burbach JP, Hol EM: Mutations in RNA: a first example of molecular misreading in Alzheimer’s disease. Trends Neurosci 1998, 21:331–335.

    Article  PubMed  Google Scholar 

  21. Fridovich I: Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci 1999, 893:13–18.

    Article  PubMed  CAS  Google Scholar 

  22. Wallace DC: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2005, 39:359–407.

    Article  PubMed  CAS  Google Scholar 

  23. Arvanitakis Z, Wilson RS, Bienias JL, et al.: Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 2004, 61:661–666.

    Article  PubMed  Google Scholar 

  24. Cloos PA, Christgau S: Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity. Biogerontology 2004, 5:139–158.

    Article  PubMed  CAS  Google Scholar 

  25. Macario AJ, Conway de Macario E: Sick chaperones, cellular stress, and disease. N Engl J Med 2005, 353:1489–1501.

    Article  PubMed  CAS  Google Scholar 

  26. Hamos JE, Oblas B, Pulaski-Salo D, et al.: Expression of heat shock proteins in Alzheimer’s disease. Neurology 1991, 41:345–350.

    PubMed  CAS  Google Scholar 

  27. Yoo BC, Kim SH, Cairns N, et al.: Deranged expression of molecular chaperones in brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 2001, 280:249–258.

    Article  PubMed  CAS  Google Scholar 

  28. Shen Q, Goderie SK, Jin L, et al.: Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 2004, 304:1338–1340.

    Article  PubMed  CAS  Google Scholar 

  29. Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002, 297:353–356.

    Article  PubMed  CAS  Google Scholar 

  30. Lacor PN, Buniel MC, Chang L, et al.: Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 2004, 24:10191–10200.

    Article  PubMed  CAS  Google Scholar 

  31. Plant LD, Boyle JP, Smith IF, et al.: The production of amyloid beta peptide is a critical requirement for the viability of central neurons. J Neurosci 2003, 23:5531–5535.

    PubMed  CAS  Google Scholar 

  32. Bishop GM, Robinson SR: Physiological roles of amyloid-beta and implications for its removal in Alzheimer’s disease. Drugs Aging 2004, 21:621–630.

    Article  PubMed  CAS  Google Scholar 

  33. Wines-Samuelson M, Shen J: Presenilins in the developing, adult, and aging cerebral cortex. Neuroscientist 2005, 11:441–451.

    Article  PubMed  CAS  Google Scholar 

  34. Gomez-Isla T, Hollister R, West H, et al.: Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 1997, 41:17–24.

    Article  PubMed  CAS  Google Scholar 

  35. Klunk WE, Lopresti BJ, Ikonomovic MD, et al.: Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer’s disease brain but not in transgenic mouse brain. J Neurosci 2005, 25:10598–10606.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Drachman MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drachman, D.A. Rethinking Alzheimer’s disease: The role of age-related changes. Curr Neurol Neurosci Rep 7, 265–268 (2007). https://doi.org/10.1007/s11910-007-0040-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-007-0040-4

Keywords

Navigation