Skip to main content
Log in

Recent advances in the neuroimaging of multiple sclerosis

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Neuroimaging studies continue to provide important insights into the central nervous system disease pathology of multiple sclerosis (MS). Although conventional magnetic resonance imaging remains the mainstay of diagnosis and laboratory assessment of therapeutic response in MS, quantitative techniques continue to extend our understanding of both macroscopic and microscopic disease processes. Over the past year, many published studies have investigated measures of brain atrophy, gray matter involvement, vascular properties, and myelin and neuronal loss and have examined their relationship to clinical disease expression, genotype, and therapy. An important trend continuing over the past year is the development of targeted agents to improve the pathologic specificity of imaging measures. Specific disease measures such as endothelial activation, microglial activation, and cell trafficking are accessible to neuroimaging and offer significant promise for improved characterization of central nervous system involvement in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Charcot JM: Histology of sclerotic plaques. Gazette Hop 1868, 141:554–558.

    Google Scholar 

  2. Kalkers NF, Ameziane N, Bot JC, et al.: Longitudinal brain volume measurement in multiple sclerosis: rate of brain atrophy is independent of the disease subtype. Arch Neurol 2002, 59:1572–1576.

    Article  PubMed  Google Scholar 

  3. Simon JH: From enhancing lesions to brain atrophy in relapsing MS. J Neuroimmunol 1999, 98:7–15.

    Article  PubMed  CAS  Google Scholar 

  4. Simon JH, Jacobs LD, Campion MK, et al.: A longitudinal study of brain atrophy in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Neurology 1999, 53:139–148.

    PubMed  CAS  Google Scholar 

  5. Coffey CE, Wilkinson WE, Parashos IA, et al.: Quantitative cerebral anatomy of the aging human brain: a cross-sectional study using magnetic resonance imaging. Neurology 1992, 42:527–536.

    PubMed  CAS  Google Scholar 

  6. Coffey CE, Lucke JF, Saxton JA, et al.: Sex differences in brain aging: a quantitative magnetic resonance imaging study. Arch Neurology 1998, 55:169–179.

    Article  CAS  Google Scholar 

  7. Smith SM, De Stefano N, Jenkinson M, Matthews PM:Normalized accurate measurement of longitudinal brain change. J Comput Assist Tomogr 2001, 25:466–475.

    Article  PubMed  CAS  Google Scholar 

  8. Schnack HG, van Haren NE, Hulshoff Pol HE, et al.: Reliability of brain volumes from multicenter MRI acquisition: a calibration study. Hum Brain Mapp 2004, 22:312–320.

    Article  PubMed  Google Scholar 

  9. Sanfilipo MP, Benedict RH, Zivadinov R, Bakshi R: Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: the proportion vs. residual method. Neuroimage 2004, 22:1732–1743.

    Article  PubMed  Google Scholar 

  10. Pelletier D, Garrison K, Henry R: Measurement of wholebrain atrophy in multiple sclerosis. J Neuroimaging 2004, 14:11S-19S.

    Article  PubMed  Google Scholar 

  11. Sastre-Garriga J, Ingle GT, Chard DT, et al.: Grey and white matter atrophy in early clinical stages of primary progressive multiple sclerosis. Neuroimage 2004, 22:353–359.

    Article  PubMed  Google Scholar 

  12. Rudick RA: Impact of disease-modifying therapies on brain and spinal cord atrophy in multiple sclerosis. J Neuroimaging 2004, 14:54S-64S.

    Article  PubMed  Google Scholar 

  13. Filippi M, Rovaris M, Inglese M, et al.: Interferon beta-1a for brain tissue loss in patients at presentation with syndromes suggestive of multiple sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet 2004, 364:1489–1496. This work demonstrates that early treatment of CIS patients not only reduces the risk of conversion to clinically definite MS but also reduces brain tissue loss. Modest association between T2-weighted MRI measures of new focal disease and subsequent brain tissue loss suggests an association between inflammation and brain atrophy.

    Article  PubMed  CAS  Google Scholar 

  14. Enzinger C, Ropele S, Smith S, et al.: Accelerated evolution of brain atrophy and “black holes” in MS patients with APOEepsilon 4. Ann Neurol 2004, 55:563–569.

    Article  PubMed  CAS  Google Scholar 

  15. Kantarci OH, Hebrink DD, Achenbach SJ, et al.: Association of APOE polymorphisms with disease severity in MS is limited to women. Neurology 2004, 62:811–814.

    PubMed  CAS  Google Scholar 

  16. Schmidt S, Barcellos LF, DeSombre K, et al.: Multiple Sclerosis Genetics Group: Association of polymorphisms in the apolipoprotein E region with susceptibility to and progression of multiple sclerosis. Am J Hum Genet 2002, 70:708–717.

    Article  PubMed  CAS  Google Scholar 

  17. De Stefano N, Bartolozzi ML, Nacmias B, et al.: Influence of apolipoprotein E epsilon4 genotype on brain tissue integrity in relapsing-remitting multiple sclerosis. Arch Neurol 2004, 61:536–540.

    Article  PubMed  Google Scholar 

  18. Allen IV, Mckeown SR: A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neurol Sci 1979, 41:81–91.

    Article  PubMed  CAS  Google Scholar 

  19. Lacomis D, Osbakken M, Gross G: Spin-lattice relaxation (T1) times of cerebral white matter in multiple sclerosis. Magn Reson Med 1986, 3:194–202.

    Article  PubMed  CAS  Google Scholar 

  20. Dousset V, Grossman RI, Ramer KN, et al.: Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology 1992, 182:453–391.

    Google Scholar 

  21. Larsson HE, Thomsen C, Frederiksen J, et al.: In vivo magnetic resonance diffusion measurement in the brain of patients with multiple sclerosis. Magn Reson Imaging 1992, 10:7–12.

    Article  PubMed  CAS  Google Scholar 

  22. Chen JT, Narayanan S, Collins DL, et al.: Relating neocortical pathology to disability progression in multiple sclerosis using MRI. Neuroimage 2004, 23:1168–1175. Assessment of GM involvement in MS using MRI remains problematic due to poor contrast between pathology and normal tissue. The method described in this paper provides an automated assessment of GM cortical thickness and the integrity of the GM-WM junction. The technique can be applied using standard T1-weighted MRI data easily acquired in clinical studies.

    Article  PubMed  CAS  Google Scholar 

  23. Schmierer K, Scaravilli F, Altmann DR, et al.: Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 2004, 56:407–415. The pathologic specificity of MTR is investigated in this study of fresh postmortem MS brain cells. Quantitative histopathology data were compared with MRI data and a solid association between myelin content and MTR was found.

    Article  PubMed  Google Scholar 

  24. Audoin B, Ranjeva JP, Duong MV, et al.: Voxel-based analysis of MTR images: a method to locate gray matter abnormalities in patients at the earliest stage of multiple sclerosis. J Magn Reson Imaging 2004, 20:765–771. The use of statistical parametric mapping to map MTR abnormalities is innovative.

    Article  PubMed  Google Scholar 

  25. McDonald WI, Compston A, Edan G, et al.: Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001, 50:121–127.

    Article  PubMed  CAS  Google Scholar 

  26. Rovaris M, Gallo A, Riva R, et al.: An MT MRI study of the cervical cord in clinically isolated syndromes suggestive of MS. Neurology 2004, 63:584–585.

    PubMed  CAS  Google Scholar 

  27. Davies GR, Ramio-Torrenta L, Hadjiprocopis A, et al.: Evidence for grey matter MTR abnormality in minimally disabled patients with early relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 2004, 75:998–1002. Normal-appearing GM masks were generated using statistical parametric mapping-99, and MTR data were calculated from these regions after erosion to minimize CSF partial volume effects. Significant MTR differences between MS-NAGM and control subjects suggest widespread GM involvement in early RRMS.

    Article  PubMed  CAS  Google Scholar 

  28. Laule C, Vavasour IM, Moore GR, et al.: Water content and myelin water fraction in multiple sclerosis. A T2 relaxation study. J Neurol 2004, 251:284–293. A promising quantitative T2 technique that might provide the most specific MRI measure of myelin. Reduced myelin water fraction and increased water content were found in MS-NAWM, which suggests widespread microscopic disease.

    Article  PubMed  CAS  Google Scholar 

  29. Inglese M, Ge Y, Filippi M, et al.: Indirect evidence for early widespread gray matter involvement in relapsing-remitting multiple sclerosis. Neuroimage 2004, 21:1825–1829. Whole-brain NAA was reduced much greater than can be explained by white matter involvement alone.

    Article  PubMed  Google Scholar 

  30. Inglese M, Liu S, Babb JS, et al.: Three-dimensional proton spectroscopy of deep gray matter nuclei in relapsing-remitting MS. Neurology 2004, 63:170–172. This study showed a 7% reduction in NAA and a 14% increase in choline in deep GM nuclei.

    PubMed  CAS  Google Scholar 

  31. He J, Inglese M, Li BS, et al.: Relapsing-remitting multiple sclerosis: metabolic abnormality in nonenhancing lesions and normal-appearing white matter at MR imaging: initial experience. Radiology 2005, 234:211–217.

    Article  PubMed  Google Scholar 

  32. Adalsteinsson E, Langer-Gould A, Homer RJ, et al.: Gray matter N-acetyl aspartate deficits in secondary progressive but not relapsing-remitting multiple sclerosis. Am J Neuroradiol 2003, 24:1941–1945.

    PubMed  Google Scholar 

  33. Narayana PA, Doyle TJ, Lai D, Wolinsky JS: Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 1998, 43:56–71.

    Article  PubMed  CAS  Google Scholar 

  34. Tartaglia MC, Narayanan S, De Stefano N, et al.: Choline is increased in pre-lesional normal appearing white matter in multiple sclerosis. J Neurol 2002, 249:1382–1390.

    Article  PubMed  CAS  Google Scholar 

  35. Chang L, Ernst T, Poland RE, Jenden DJ: In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci 1996, 58:2049–2056.

    Article  PubMed  CAS  Google Scholar 

  36. Suhy J, Rooney WD, Goodkin DE, et al.: 1H MRSI comparison of white matter and lesions in primary progressive and relapsing-remitting MS. Mult Scler 2000, 6:148–155.

    PubMed  CAS  Google Scholar 

  37. Hetherington HP, Pan JW, Mason GF, et al.: Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn Reson Med 1996, 36:21–29.

    Article  PubMed  CAS  Google Scholar 

  38. Tartaglia MC, Narayanan S, Francis SJ, et al.: The relationship between diffuse axonal damage and fatigue in multiple sclerosis. Arch Neurol 2004, 61:201–207.

    Article  PubMed  Google Scholar 

  39. Helms G, Stawiarz L, Kivisakk P, Link H: Regression analysis of metabolite concentrations estimated from localized proton MR spectra of active and chronic multiple sclerosis lesions. Magn Reson Med 2000, 43:102–110.

    Article  PubMed  CAS  Google Scholar 

  40. Fernando KT, McLean MA, Chard DT, et al.: Elevated white matter myo-inositol in clinically isolated syndromes suggestive of multiple sclerosis. Brain 2004, 127:1361–1369.

    Article  PubMed  CAS  Google Scholar 

  41. Ehrlich P: Das Sauserstoff-Bedurfnis des Organismus: eine Farbenanalytische Studie. Berlin: Hirschwald; 1885.

    Google Scholar 

  42. Reese TS, Karnovsky MJ: Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 1967, 34:207–217.

    Article  PubMed  CAS  Google Scholar 

  43. Janzer RC, Raff MC: Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 1987, 325:253–257.

    Article  PubMed  CAS  Google Scholar 

  44. Kirk J, Plumb J, Mirakhur M, McQuaid S: Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J Pathol 2003, 201:319–327.

    Article  PubMed  Google Scholar 

  45. Silver NC, Tofts PS, Symms MR, et al.: Quantitative contrastenhanced magnetic resonance imaging to evaluate bloodbrain barrier integrity in multiple sclerosis: a preliminary study. Mult Scler 2001, 7:75–82.

    PubMed  CAS  Google Scholar 

  46. Kraus J, Ling AK, Hamm S, et al.: Interferon-beta stabilizes barrier characteristics of brain endothelial cells in vitro. Ann Neurol 2004, 56:192–205.

    Article  PubMed  CAS  Google Scholar 

  47. Bakshi R, Miletich RS, Kinkel PR, et al.: High-resolution fluorodeoxyglucose positron emission tomography shows both global and regional cerebral hypometabolism in multiple sclerosis. J Neuroimaging 1998, 8:228–234.

    Article  PubMed  CAS  Google Scholar 

  48. Rashid W, Parkes LM, Ingle GT, et al.: Abnormalities of cerebral perfusion in multiple sclerosis. J Neurol Neurosurg Psychiatry 2004, 75:1288–1293. Arterial spin labeling techniques are used to estimate perfusion abnormalities associated with MS. This article is an important step in attempt to more fully characterize vascular properties and their association with MS disease.

    Article  PubMed  CAS  Google Scholar 

  49. Detre JA, Alsop DC: Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system. Eur J Radiol 1999, 30:115–124.

    Article  PubMed  CAS  Google Scholar 

  50. Parkes LM, Rashid W, Chard DT, Tofts PS: Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 2004, 51:736–743.

    Article  PubMed  Google Scholar 

  51. Law M, Saindane AM, Ge Y, et al.: Microvascular abnormality in relapsing-remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology 2004, 231:645–652.

    Article  PubMed  Google Scholar 

  52. Wuerfel J, Bellmann-Strobl J, Brunecker P, et al.: Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain 2004, 127:111–119. This paper tackles the difficult question of prelesion vascular changes in MS.

    Article  PubMed  Google Scholar 

  53. Filippi M, Rocca MA, Martino G, et al.: Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 1998, 43:809–814.

    Article  PubMed  CAS  Google Scholar 

  54. Goodkin DE, Rooney WD, Sloan RS, et al.: A serial study of new MS lesions and the white matter from which they arise. Neurology 1998, 51:1689–1697.

    PubMed  CAS  Google Scholar 

  55. Smith KJ, Lassman H: The role of nitric oxide in multiple sclerosis. Lancet Neurol 2002, 1:232–241.

    Article  PubMed  CAS  Google Scholar 

  56. Tofts PS: Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997, 7:91–101.

    Article  PubMed  CAS  Google Scholar 

  57. Yankeelov TE, Rooney WD, Huang W, et al.: Evidence for shutter-speed variation in CR bolus-tracking studies of human pathology. Nucl Magn Reson Biomed 2004, In press.

  58. Corot C, Petry KG, Trivedi R, et al.: Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest Radiol 2004, 39:619–625.

    Article  PubMed  CAS  Google Scholar 

  59. Golman K, Olsson LE, Axelsson O, et al.: Molecular imaging using hyperpolarized 13C. Br J Radiol 2003, 76(Spec No 2):S118-S127.

    Article  PubMed  CAS  Google Scholar 

  60. Laurent S, Vander Elst L, Fu Y, Muller RN: Synthesis and physicochemical characterization of Gd-DTPA-B(sLex)A, a new MRI contrast agent targeted to inflammation. Bioconjug Chem 2004, 15:99–103.

    Article  PubMed  CAS  Google Scholar 

  61. Sibson NR, Blamire AM, Bernades-Silva M, et al.: MRI detection of early endothelial activation in brain inflammation. Magn Reson Med 2004, 51:248–252. This paper addresses the important goal of selective targeting of protein expressed during endothelial activation in MS. This could be one of the earliest events amenable to imaging in MS.

    Article  PubMed  CAS  Google Scholar 

  62. Anderson SA, Shukaliak-Quandt J, Jordan EK, et al.: Magnetic resonance imaging of labeled T-cells in a mouse model of multiple sclerosis. Ann Neurol 2004, 55:654–659. The ability to track T-cell migration in MS could have tremendous impact on improved understanding of natural history and assessment of therapeutic interventions. The ability to selectively label and track specific cell types in an animal model of MS using MRI-based techniques is exciting and offers significant promise for improved specificity in neuroimaging.

    Article  PubMed  Google Scholar 

  63. Floris S, Blezer EL, Schreibelt G, et al.: Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study. Brain 2004, 127:616–627. The ability to track macrophage migration in MS could have tremendous impact on improved understanding of natural history and assessment of therapeutic interventions.

    Article  PubMed  CAS  Google Scholar 

  64. Ido T, Wan CN, Casella V, et al.: Labeled 2-deoxy-D-glucose analogs. Labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and C-14-2-deoxy-2-fluoro-D-glucose. J Labeled Compounds and Radiopharmaceuticals 1978, 14:175–182.

    Article  CAS  Google Scholar 

  65. Debruyne JC, Versijpt J, Van Laere KJ, et al.: PET visualization of microglia in multiple sclerosis patients using [11C]PK11195. Eur J Neurol 2003, 10:257–264.

    Article  PubMed  CAS  Google Scholar 

  66. Wilms H, Claasen J, Rohl C, et al.: Involvement of benzodiazepine receptors in neuroinflammatory and neurodegenerative diseases: evidence from activated microglial cells in vitro. Neurobiol Dis 2003, 14:417–424.

    Article  PubMed  CAS  Google Scholar 

  67. Veiga S, Melcangi RC, Doncarlos LL, et al.: Sex hormones and brain aging. Exp Gerontol 2004, 39:1623–1631.

    Article  PubMed  CAS  Google Scholar 

  68. Lockhart A, Davis B, Matthews JC, et al.: The peripheral benzodiazepine receptor ligand PK11195 binds with high affinity to the acute phase reactant alpha1-acid glycoprotein: implications for the use of the ligand as a CNS inflammatory marker. Nucl Med Biol 2003, 30:199–206.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rooney, W.D., Coyle, P.K. Recent advances in the neuroimaging of multiple sclerosis. Curr Neurol Neurosci Rep 5, 217–224 (2005). https://doi.org/10.1007/s11910-005-0049-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-005-0049-5

Keywords

Navigation