Skip to main content

Advertisement

Log in

Abstract

The congenital myopathies encompass a group of neuromuscular disorders with characteristic morphologic abnormalities in skeletal muscle, including nemaline myopathy, central core disease, multi-minicore disease, and myotubular myopathy. Giant steps have been made in our understanding of the molecular bases of these disorders, all of which show remarkable genetic heterogeneity. This review of congenital myopathies examines progress in defining clinical diagnostic criteria and novel genetic advances that have provided important clues regarding their pathogeneses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Dubowitz V: Muscle Biopsy. A Practical Approach. London: Baillière Tindall; 1985.

    Google Scholar 

  2. Fardeau M, Tome F: Congenital myopathies. In Myology. Edited by Engel AG, Franzini-Armstrong C. New York: McGraw-Hill; 1994:1487–1533.

    Google Scholar 

  3. Taratuto AL: Congenital myopathies and related disorders. Curr Opin Neurol 2002, 15:553–561. An updated review on congenital myopathies and their related disorders, with extensive comments on recent literature.

    Article  PubMed  Google Scholar 

  4. Wallgren-Pattersson C: 70th ENMC International Workshop: Nemaline Myopathy. Naarden, The Netherlands. 11–13 June 1999. Neuromuscul Disord 2000, 10:299–306.

    Article  Google Scholar 

  5. Ryan MM, Schnell C, Strickland CD, et al.: Nemaline myopathy: a clinical study of 143 cases. Ann Neurol 2001, 50:312–320.

    Article  PubMed  CAS  Google Scholar 

  6. Pelin K, Hilpela P, Donner K, et al.: Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proc Natl Acad Sci U S A 1999, 96:2305–2310.

    Article  PubMed  CAS  Google Scholar 

  7. Wallgren-Pattersson C, Donner K, Sewry CA, et al.: Mutations in the nebulin gene can cause severe congenital nemaline myopathy. Neuromuscul Disord 2002, 12:674–679.

    Article  Google Scholar 

  8. Nowak KJ, Wattanasirichaigoon D, Goebel HH, et al.: Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet 1999, 23:208–212.

    Article  PubMed  CAS  Google Scholar 

  9. Ilkovski B, Cooper ST, Nowak K, et al.: Nemaline myopathy caused by mutations in the muscle alpha-skeletal-actin gene. Am J Hum Genet 2001, 68:1333–1343. The authors define the frequency and range of clinical and pathologic phenotypes associated with mutations in muscle α-skeletal actin.

    Article  PubMed  CAS  Google Scholar 

  10. Jungbluth H, Sewry CA, Brown SC, et al.: Mild phenotype of nemaline myopathy with sleep hypoventilation due to a mutation in the skeletal muscle alpha-actin (ACTA1) gene. Neuromuscul Disord 2001, 11:35–40.

    Article  PubMed  CAS  Google Scholar 

  11. Laing NG, Wilton SD, Akkari PA, et al.: A mutation in the alpha tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy NEM1. Nat Genet 1995, 9:75–79.

    Article  PubMed  CAS  Google Scholar 

  12. Donner K, Ollikainen M, Ridanpaa M, et al.: Mutations in the beta-tropomyosin (TPM2) gene-a rare cause of nemaline myopathy. Neuromuscul Disord 2002, 12:151–158.

    Article  PubMed  Google Scholar 

  13. Johnston JJ, Kelley RI, Crawford TO, et al.: A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am J Hum Genet 2000, 67:814–821.

    Article  PubMed  CAS  Google Scholar 

  14. Jin JP, Brotto MA, Hossain MM, et al.: Truncation by Glu180 nonsense mutation results in complete loss of slow skeletal muscle troponin T in lethal nemaline myopathy. J Biol Chem 2003, 278:26159–26165.

    Article  PubMed  CAS  Google Scholar 

  15. Bethlem J, Arts WF, Koert P, Dingemans KP: Common origins of rods, cores, miniature cores, and focal loss of crossstriations. Arch Neurol 1978, 35:555–566.

    PubMed  CAS  Google Scholar 

  16. Monnier N, Romero NB, Lerale J, et al.: An autosomal dominant congenital myopathy with cores and rods is associated with a neomutation in the RYR1 gene encoding the skeletal muscle ryanodine receptor. Hum Mol Genet 2000, 9:2599–2608.

    Article  PubMed  CAS  Google Scholar 

  17. Gommans IM, Davis M, Saar K, et al.: A locus on chromosome 15q for a dominantly inherited nemaline myopathy with core-like lesions. Brain 2003, 126:1545–1551.

    Article  PubMed  CAS  Google Scholar 

  18. Sanoudou D, Haslett JN, Kho AT, et al.: Expression profiling reveals altered satellite cell numbers and glycolytic enzyme transcription in nemaline myopathy muscle. Proc Natl Acad Sci USA 2003, 1000:4666–4671.

    Article  Google Scholar 

  19. De Cauwer H, Heytens L, Martin JJ: 89th ENMC International Workshop: Central Core Disease. Hilversum, The Netherlands, 19–20 January 2001. Neuromuscul Disord 2002, 12:588–595. This first International Workshop on CCD revised the diagnostic criteria, based on the different cases known from literature and presented by different centers.

    Article  PubMed  Google Scholar 

  20. Hayashi K, Miller RG, Brownell AK: Central core disease: ultrastructure of the sarcoplasmic reticulum and t-tubules. Muscle Nerve 1989, 2:95–102.

    Article  Google Scholar 

  21. Sewry CA, Muller C, Davis M, et al.: The spectrum of pathology in central core disease. Neuromuscul Disord 2002, 930–938.

  22. Jurkat-Rott K, McCarthy T, Lehmann-Horn F: Genetics and pathogenesis of malignant hyperthermia. Muscle Nerve 2000, 23:4–17.

    Article  PubMed  CAS  Google Scholar 

  23. Jungbluth H, Muller CR, Halliger-Keller B, et al.: Autosomal recessive inheritance of RYR1 mutations in a congenital myopathy with cores. Neurology 2002, 59:284–287.

    PubMed  CAS  Google Scholar 

  24. Zhang Y, Chen HS, Khanna VK, et al.: A mutation in the human ryanodine receptor gene associated with central core disease. Nat Genet 1993, 5:46–49.

    Article  PubMed  CAS  Google Scholar 

  25. Quane KA, Healy JM, Keating KE, et al.: Mutation in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat Genet 1993, 5:51–55.

    Article  PubMed  CAS  Google Scholar 

  26. McCarthy TV, Quane KA, Linch PJ: Ryanodine receptor mutations in malignant hyperthermia and central core disease. Hum Mutat 2000, 15:410–417.

    Article  PubMed  CAS  Google Scholar 

  27. Davis MR, Haan E, Jungbluth H: Principal mutation hotspot for central core disease and related myopathies in the C-terminal transmembrane region of the RYR1 gene. Neuromuscul Disord 2003, 13:151–157. This paper reports the identification of novel mutations in the 3′ end of RYR1 gene in CCD or core/rod disease patients, confirming the "hot spot" role of this domain.

    Article  PubMed  CAS  Google Scholar 

  28. Tilgen N, Zorzato F, Halliger-Keller B, et al.: Identification of four novel mutations in the C-terminal membrane spanning domain of the ryanodine receptor 1: association with central core disease and alteration of calcium homeostasis. Hum Mol Genet 2001, 10:2879–2887.

    Article  PubMed  CAS  Google Scholar 

  29. Avila G, O’Brien JJ, Dirksen RT: Excitation-contraction uncoupling by a human central core disease mutation in the ryanodine receptor. Proc Natl Acad Sci U S A 2001, 98:4215–4520.

    Article  PubMed  CAS  Google Scholar 

  30. Fananazapir L, Dalakas M, Cyran F, et al.: Missense mutations in the beta-myosin heavy chain gene cause central core disease in hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A 1993, 90:3993–3997.

    Article  Google Scholar 

  31. Vallat JM, de Lumley L, Loubet A, et al.: Coexistence of minicores, cores, and rods in the same muscle biopsy. A new example of mixed congenital myopathy. Acta Neuropathol 1982, 58:229–232.

    Article  PubMed  CAS  Google Scholar 

  32. Ferreiro A, Fardeau M: 80th ENMC International Workshop on Multi-Minicore Disease: 1st International MmD Workshop. Soestduinen, The Netherlands, 12–13 May 2000. Neuromuscul Disord 2002, 12:60–68. The diagnostic criteria of MmD, including the morphologic and phenotypical characteristics, are reported.

    Article  PubMed  Google Scholar 

  33. Ferreiro A, Monnier N, Romero NB, et al.: A recessive form of central core disease, transiently presenting as multi-minicore disease, is associated with a homozygous mutation in the ryanodine receptor type 1 gene. Ann Neurol 2002, 51:750–759.

    Article  PubMed  CAS  Google Scholar 

  34. Ferreiro A, Estournet B, Chateau D, et al.: Multi-minicore disease-searching for boundaries: phenotype analysis of 38 cases. Ann Neurol 2000, 48:745–757.

    Article  PubMed  CAS  Google Scholar 

  35. Moghadaszadeh B, Desguerre I, Topaloglu H, et al.: Identification of a new locus for a peculiar form of congenital muscular dystrophy with early rigidity of the spine, on chromosome 1p35-36. Am J Hum Genet 2001, 62:1439–1445.

    Article  Google Scholar 

  36. Ferreiro A, Quijano-Roy S, Pichereau C, et al.: Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore diseases: reassessing the nosology of earlyonset myopathies. Am J Hum Genet 2002, 71:739–749. This study represents the first identification of a gene responsible for classic MmD and reassess the nosologic boundaries between MmD and rigid spine muscular dystrophy.

    Article  PubMed  Google Scholar 

  37. Petit N, Lescure A, Rederstorff M, et al.: Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum Mol Genet 2003, 12:1045–1053. The authors, using subcellular fractionation experiments, provide evidence that SEPN1 is a glycoprotein localized within the endoplasmic reticulum, suggesting a role for SEPN1 in early development and in cell proliferation or regeneration.

    Article  PubMed  CAS  Google Scholar 

  38. Monnier N, Ferreiro A, Marty I, et al.: A homozygous splicing mutation causing a depletion of skeletal muscle RYR1 gene is associated with multi-minicore disease congenital myopathy with ophthalmoplegia. Hum Mol Genet 2003, 12:1171–1178.

    Article  PubMed  CAS  Google Scholar 

  39. Wallgren-Pattersson C: 72nd ENMC International Workshop: Myotubular Myopathy. Hilversum, The Netherlands, 1–3 October 1999. Neuromuscul Disord 2000, 10:525–529. This is a comprehensive update on molecular genetic advances and pathogenesis on myotubular myopathy.

    Article  Google Scholar 

  40. Merman GE, Finegold M, Zhao W, et al.: Medical complications in long-term survivors with X-linked myotubular myopathy. J Pediatr 1999, 134:206–214.

    Article  Google Scholar 

  41. Laporte J, Hu LJ, Kretz C, et al.: A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 1996, 13:175–182.

    Article  PubMed  CAS  Google Scholar 

  42. Biancalana V, Caron O, Gallati S, et al.: Characterisation of mutations in 77 patients with X-linked myotubular myopathy, including a family with a very mild phenotype. Hum Genet 2003, 112:135–142. An extensive and updated review of the mutations in the X-linked myotubular myopathy.

    PubMed  Google Scholar 

  43. McEntagart M, Parsons G, Buj-Bello A, et al.: Genotype-phenotype correlations in X-linked myotubular myopathy. Neuromuscul Disord 2002, 12:939–946.

    Article  PubMed  Google Scholar 

  44. Schara U, Kress W, Tucke J, Mortier W: X-linked myotubular myopathy in a female infant caused by a new MTM1 gene mutation. Neurology 2003, 60:1363–1365.

    Article  PubMed  Google Scholar 

  45. Jungbluth H, Sewry CA, Buj-Bello A, et al.: Early and severe presentation of X-linked myotubular myopathy in a girl with skewed X-inactivation. Neuromuscul Disord 2003, 13:55–59.

    Article  PubMed  CAS  Google Scholar 

  46. Laporte J, Kress W, Mandel JL: Diagnosis of X-linked myotubular myopathy by detection of myotubularin. Ann Neurol 2001, 50:42–46. The authors analyzed several cell lines from unrelated patients with XLMTM for the presence of myotubularin, using immunoprecipitation and Western blotting. They found that most of the patients showed an absence or decreased levels of the protein.

    Article  PubMed  CAS  Google Scholar 

  47. Azzedine H, Bolino A, Taieb T, et al.: Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am J Hum Genet 2003, 72:1141–1153.

    Article  PubMed  CAS  Google Scholar 

  48. Blondeau F, Laporte J, Bodin S, et al.: Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphatase pathway. Hum Mol Genet 2000, 9:2223–2229.

    PubMed  CAS  Google Scholar 

  49. Nardurkar HH, Layton M, Laporte J, et al.: Identification of myotubularin as the lipid phosphatase catalytic subunit associated with 3-phosphatase adapter protein, 3-PAP. Proc Natl Acad Sci U S A 2003, 100:8660–8665.

    Article  Google Scholar 

  50. Buj-Bello A, Laugel V, Messaddeq N, et al.: The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci U S A 2002, 99:15060–15065. The authors developed an Mtm1 knockout mouse showing a progressive myopathy with the histopathologic signs of XLMTM starting few weeks after birth, suggesting that the disorganized appearance of the muscle fibers is due to a defect in structural maintenance rather than an impairment in myogenesis.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, C., Minetti, C. Congenital myopathies. Curr Neurol Neurosci Rep 4, 68–73 (2004). https://doi.org/10.1007/s11910-004-0015-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-004-0015-7

Keywords

Navigation