Skip to main content
Log in

Primitive neuroectodermal tumors/medulloblastoma

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The therapy for medulloblastoma/primitive neuroectodermal tumors of the central nervous system is surgery, followed by combination chemo-radiotherapy [1]. The radiation field is the entire craniospinal axis, which is only avoided when treating infants. The treatment is, therefore, lengthy and toxic [2••]. Less aggressive therapy is given to patients who clinically appear to have less evidence of disease. Intensive basic research has begun to identify genetic factors of the disease, but these remain far from clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Taylor RE: United Kingdom Children’s Cancer Study Group (UKCCSG) radiotherapy and brain tumour groups: medulloblastoma/PNET and craniospinal radiotherapy (CSRT): report of a workshop held in Leeds, 30 June 1999. Clin Oncol 2001, 13:58–640.

    CAS  Google Scholar 

  2. Chintagumpala M, Berg S, Blaney SM: Treatment controversies in medulloblastoma. Curr Opin Oncol 2001, 13:154–159. A review of the strategies and management challenges of the most common pediatric brain tumor. Discusses problems with timing and dosing of treatment modalities.

    Article  PubMed  CAS  Google Scholar 

  3. Dahmen RP, Koch A, Denkhaus D, et al.: Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res 2001, 61:7039–7043.

    PubMed  CAS  Google Scholar 

  4. Taylor MD, Mainprize TG, Rutka JT, et al.: Medulloblastoma in a child with Rubenstein-Taybi syndrome: case report and review of the literature. Pediatr Neurosurg 2001, 35:235–238.

    Article  PubMed  CAS  Google Scholar 

  5. Stavrou T, Bromley CM, Nicholson HS, et al.: Prognostic factors and secondary malignancies in childhood medulloblastoma. Am J Pediatr Hematol Oncol 2001, 23:431–436.

    Article  CAS  Google Scholar 

  6. Al-Saleh I, Shinwari N: Levels of cadmium, lead, and mercury in human brain tumors. Biol Trace Elem Res 2001, 79:197–203.

    Article  PubMed  CAS  Google Scholar 

  7. Cordier S, Mandereau L, Preston-Martin S, et al.: Parental occupations and childhood brain tumors: results of an international case-control study. Cancer Causes Control 2001, 12:865–874.

    Article  PubMed  CAS  Google Scholar 

  8. Szekessy DP, Stoltenburg-Didinger G: Differentiation, proliferation and apoptosis in primary and recurrent primitive neuroectodermal tumors of childhood. Childs Nerv Syst 2001, 17:320–327.

    Article  PubMed  CAS  Google Scholar 

  9. Fruhwald MC, O’Dorisio MS, Dai Z, et al.: Aberrant promoter methylation of previously unidentified target genes is a common abnormality in medulloblastomas--implications for tumor biology and potential clinical utility. Oncogene 2001, 20:5033–5042.

    Article  PubMed  CAS  Google Scholar 

  10. Bruch LA, Hill DA, Cai DX, et al.: A role for fluorescence in situ hybridization detection of chromosome 22q dosage in distinguishing atypical teratoid/rhabdoid tumors from medulloblastoma/central primitive neuroectodermal tumors. Hum Pathol 2001, 32:156–162.

    Article  PubMed  CAS  Google Scholar 

  11. Antunes NL, Lellouch-Tubiana A, Kalifa C, et al.: Intracranial Ewing sarcoma/’peripheral’ primitive neuroectodermal tumor of dural origin with molecular genetic confirmation. J Neurooncol 2001, 51:51–56.

    Article  PubMed  CAS  Google Scholar 

  12. Fruhwald MC, O’Dorisio MS, Dai Z, et al.: Aberrant hypermethylation of the major breakpoint cluster region in 17p11.2 in medulloblastomas but not supratentorial PNETs. Genes Chromosomes Cancer 2001, 30:38–47.

    Article  PubMed  CAS  Google Scholar 

  13. Yin XL, Pang JC, Liu YH, et al.: Analysis of loss of heterozygosity on chromosomes 10q, 11, and 16 in medulloblastomas. J Neurosurg 2001, 94:799–805.

    PubMed  CAS  Google Scholar 

  14. Wetmore C, Eberhart DE, Curran T: Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res 2001, 61:513–516.

    PubMed  CAS  Google Scholar 

  15. Gilbertson R, Wickramasinghe C, Hernan R, et al.: Clinical and molecular stratification of disease risk in medulloblastoma. Br J Cancer 2001, 85:705–712. Accurate assessment of medulloblastoma prognosis is a major problem. This paper reports on the use of molecular markers and clinical evaluation as a more reliable method for calculating risk.

    Article  PubMed  CAS  Google Scholar 

  16. Roberts P, Chumas PD, Picton S, et al.: A review of the cytogenetics of 58 pediatric brain tumors. Cancer Genet Cytogenet 2001, 131:1–12.

    Article  PubMed  CAS  Google Scholar 

  17. Girschick HJ, Klein R, Scheurlen WG, Kuhl J: Cytogenetic and histopathologic studies of congenital supratentorial primitive neuroectodermal tumors: a case report. Pathol Oncol Res 2001, 7:67–71.

    Article  PubMed  CAS  Google Scholar 

  18. Grotzer MA, Hogarty MD, Janss AJ, et al.: MYC messenger RNA expression predicts survival outcome in childhood primitive neuroectodermal tumor/medulloblastoma. Clin Cancer Res 2001, 7:2425–2433. This study uses myc mRNA expression to identify low-risk patients. Significantly, all seven patients identified with this method were progression free at 4.5 years, and three of the patients survived without radiotherapy.

    PubMed  CAS  Google Scholar 

  19. Halperin EC, Watson DM, George SL: Duration of symptoms prior to diagnosis is related inversely to presenting disease stage in children with medulloblastoma. Cancer 2001, 91:1444–1450.

    Article  PubMed  CAS  Google Scholar 

  20. Weil MD, Lamborn K, Edwards MS, Wara WM: Influence of a child’s sex on medulloblastoma outcome. JAMA 1998, 279:1474–1476.

    Article  PubMed  CAS  Google Scholar 

  21. Grotzer MA, Janss AJ, Fung KM, et al.: Abundance of apoptotic neoplastic cells in diagnostic biopsy samples is not a prognostic factor in childhood primitive neuroectodermal tumors of the central nervous system. J Pediatr Hematol Oncol 2001, 23:25–29.

    Article  PubMed  CAS  Google Scholar 

  22. Woodburn RT, Azzarelli B, Montebello JF, Goss IE: Intense p53 staining is a valuable prognostic indicator for poor prognosis in medulloblastoma/central nervous system primitive neuroectodermal tumors. J Neurooncol 2001, 52:57–62.

    Article  PubMed  CAS  Google Scholar 

  23. Buell JF, Trofe J, Hanaway MJ, et al.: Transmission of donor cancer into cardiothoracic transplant recipients. Surgery 2001, 130:660–668.

    Article  PubMed  CAS  Google Scholar 

  24. Minn AY, Pollock BH, Garzarella L, et al.: Surveillance neuroimaging to detect relapse in childhood brain tumors: a pediatric oncology group study. J Clin Oncol 2001, 19:4135–4140.

    PubMed  CAS  Google Scholar 

  25. Albright AL, Wisoff JH, Zeltzer PM, et al.: Effects of medulloblastoma resections on outcome in children: a report from the Children’s Cancer Group. Neurosurgery 1996, 38:265–271.

    Article  PubMed  CAS  Google Scholar 

  26. Lam CH, Hall WA, Truwit CL, Liu H: Intra-operative MRIguided approaches to the pediatric posterior fossa tumors. Pediatr Neurosurg 2001, 34:295–300.

    Article  PubMed  CAS  Google Scholar 

  27. Di Cataldo A, Dollo C, Astuto M, et al.: Mutism after surgical removal of a cerebellar tumor: two case reports. Pediatr Hematol Oncol 2001, 18:117–1121.

    Article  Google Scholar 

  28. Sagiuchi T, Ishii K, Aoki Y, et al.: Bilateral crossed cerebellocerebral diaschisis and mutism after surgery for cerebellar medulloblastoma. Ann Nucl Med 2001, 15:157–160.

    Article  PubMed  CAS  Google Scholar 

  29. Habrand JL, De Crevoisier R: Radiation therapy in the management of childhood brain tumors. Childs Nerv Syst 2001, 17:121–133.

    Article  PubMed  CAS  Google Scholar 

  30. Palmer SL, Goloubeva O, Reddick WE, et al.: Patterns of intellectual development among survivors of pediatric medulloblastoma: a longitudinal analysis. J Clin Oncol 2001, 19:2302–2308. The devastating effects of chemo-radiation on the intellect of children are often not well quantified. This paper does a good job of measuring specific skills that are lost.

    PubMed  CAS  Google Scholar 

  31. Ris MD, Packer R, Goldwein J, Jones-Wallace D, Boyett JM: Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy for medulloblastoma: a Children’s Cancer Group study. J Clin Oncol 2001, 19:3470–3476.

    PubMed  CAS  Google Scholar 

  32. Adan L, Trivin C, Sainte-Rose C, et al.: GH deficiency caused by cranial irradiation during childhood: factors and markers in young adults. J Clin Endocrinol Metab 2001, 86:5245–5251.

    Article  PubMed  CAS  Google Scholar 

  33. Packer RJ, Boyett JM, Janss AJ, et al.: Growth hormone replacement therapy in children with medulloblastoma: use and effect on tumor control. J Clin Oncol 2001, 19:480–487.

    PubMed  CAS  Google Scholar 

  34. Ranke MB, Lindberg A, Chatelain P, et al.: The potential of prediction models based on data from KIGS as tools to measure responsiveness to growth hormone. Horm Res 2001, 55:44–48.

    Article  PubMed  CAS  Google Scholar 

  35. Ricardi U, Corrias A, Einaudi S, et al.: Thyroid dysfunction as a late effect in childhood medulloblastoma: a comparison of hyperfractionated versus conventionally fractionated craniospinal radiotherapy. Int J Radiat Oncol Biol Phys 2001, 50:1287–1294.

    Article  PubMed  CAS  Google Scholar 

  36. Corrias A, Einaudi S, Ricardi U, et al.: Thyroid diseases in patients treated during pre-puberty for medulloblastoma with different radiotherapic protocols. J Endocrinol Invest 2001, 24:387–392.

    PubMed  CAS  Google Scholar 

  37. Nakamizo A, Nishio S, Inamura T, et al.: Evolution of malignant cerebellar astrocytoma at the site of a treated medulloblastoma: report of two cases. Acta Neurochir 2001, 143:697–700.

    Article  CAS  Google Scholar 

  38. Strother D, Ashley D, Kellie SJ, et al.: Feasibility of four consecutive high-dose chemotherapy cycles with stem-cell rescue for patients with newly diagnosed medulloblastoma or supratentorial primitive neuroectodermal tumor after craniospinal radiotherapy: results of a collaborative study. J Clin Oncol 2001, 19:2696–2704. Aggressive chemotherapy with the reasonably well-tolerated assistance of stem cell rescue is being used extensively by medical oncologists. This study supports the logic behind these efforts. However, the follow-up is short.

    PubMed  CAS  Google Scholar 

  39. Yeoh EJ, Cunningham JM, Yee GC, et al.: Topotecan-filgrastim combination is an effective regimen for mobilizing peripheral blood stem cells. Bone Marrow Transplant 2001, 28:563–571.

    Article  PubMed  CAS  Google Scholar 

  40. Bailey CC, Gnekow A, Wellek S, et al.: Prospective randomised trial of chemotherapy given before radiotherapy in childhood medulloblastoma. International Society of Paediatric Oncology (SIOP) and the (German) Society of Paediatric Oncology (GPO): SIOP II. Med Pediatr Oncol 1995, 25:166–178.

    Article  PubMed  CAS  Google Scholar 

  41. Hurwitz CA, Strauss LC, Kepner J, et al.: Paclitaxel for the treatment of progressive or recurrent childhood brain tumors: a pediatric oncology phase II study. J Pediatr Hematol Oncol 2001, 23:277–281.

    Article  PubMed  CAS  Google Scholar 

  42. Geoerger B, Kerr K, Tang CB, et al.: Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res 2001, 61:1527–1532.

    PubMed  CAS  Google Scholar 

  43. Bobola MS, Berger MS, Ellenbogen RG, et al.: O6-Methylguanine-DNA methyltransferase in pediatric primary brain tumors: relation to patient and tumor characteristics. Clin Cancer Res 2001, 7:613–619.

    PubMed  CAS  Google Scholar 

  44. Magnani C, Aareleid T, Viscomi S, Pastore G, Berrino F: Variation in survival of children with central nervous system (CNS) malignancies diagnosed in Europe between 1978 and 1992: the EUROCARE study. Eur J Cancer 2001, 37:711–721.

    Article  PubMed  CAS  Google Scholar 

  45. McNally RJ, Kelsey AM, Cairns DP, et al.: Temporal increases in the incidence of childhood solid tumors seen in Northwest England (1954–1998) are likely to be real. Cancer 2001, 92:1967–1976.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weil, M.D. Primitive neuroectodermal tumors/medulloblastoma. Curr Neurol Neurosci Rep 2, 205–209 (2002). https://doi.org/10.1007/s11910-002-0078-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-002-0078-2

Keywords

Navigation