Skip to main content

Advertisement

Log in

Advances in myasthenia gravis

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Recent advances in the diagnosis and treatment of acquired myasthenia gravis (MG) are reviewed. Increased awareness about the need for more uniform methods of reporting treatment trials for MG has prompted systematic review of the literature and inspired an effort to develop better classifications and disease-specific outcome measures. New antibodies have been discovered in patients with seronegative MG, possibly defining an immunologically distinct form of the disease. A new immunosuppressant, mycophenolate mofetil, may be an additional and safe option in the treatment of MG. Other work supports the possibility of developing a vaccine against MG suitable for trial in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Engel AG: Acquired autoimmune myasthenia gravis. In Myology. Edited by Engel A, Franzini-Armstrong C. New York: McGraw-Hill; 1994:1769–1797.

    Google Scholar 

  2. Phillips LH, Torner JC: Epidemiologic evidence for a changing natural history of myasthenia gravis. Neurology 1996, 47:1233–1238.

    PubMed  Google Scholar 

  3. Aarli JA: Late-onset myasthenia gravis. A changing scene. Arch Neurol 1999, 56:25–27.

    Article  PubMed  CAS  Google Scholar 

  4. Somnier F, Trojaborg W: Neurophysiological evaluation in myasthenia gravis: a comprehensive study of a complete population. Electroencephalogr Clin Neurophysiol 1993, 20:99–104.

    Google Scholar 

  5. Poulas K, Tsibri E, Papanastasiou D, et al.: Equal male and female incidence of myasthenia gravis. Neurology 2000, 54:1202–1204.

    PubMed  CAS  Google Scholar 

  6. Pavesi G, Cattaneo L, Tinchelli S, Mancia D: Masseteric repetitive nerve stimulation in the diagnosis of myasthenia gravis. Clin Neurophysiol 2001, 112:1064–1069.

    Article  PubMed  CAS  Google Scholar 

  7. Weinberg DH, Rizzo JF, Hayes MT, Kneeland MD, Kelly JJ: Ocular myasthenia gravis: predictive value of single-fiber electromyography. Muscle Nerve 1999, 22:1222–1227. A prospective study of 37 patients with ocular myasthenia gravis (MG) in whom single-fiber electromyography (SFEMG) of an arm muscle was performed at the time of diagnosis. A normal SFEMG was associated with MG remaining restricted to the ocular muscles, but an abnormal SFEMG did not predict subsequent development of generalized disease.

    Article  PubMed  CAS  Google Scholar 

  8. Rostedt A, Sanders LL, Edwards LJ, et al.: Predictive value of single-fiber electromyography in the extensor digitorum communis muscle in patients with ocular myasthenia gravis: a retrospective study. J Clin Neuromusc Dis 2000, 2:6–9.

    Article  CAS  Google Scholar 

  9. Golnik KC, Pena R, Lee AG, Eggenberger ER: An ice test for the diagnosis of myasthenia gravis. Ophthalmology 1999, 106:1282–1286.

    Article  PubMed  CAS  Google Scholar 

  10. Hock W, McConville J, Helms S, et al.: Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 2001, 7:365–368. In 70% of patients with generalized myasthenia gravis and negative serum acetylcholine receptor (AChR)-antibody, muscle-specific receptor tyrosine kinase (MuSK) antibodies were found. These antibodies were not present in AChR-antibody-positive patients.

    Article  CAS  Google Scholar 

  11. Yamamoto AM, Gajado P, Eymard B, et al.: Anti-titin antibodies in myasthenia gravis. Tight association with thymoma and heterogeneity of nonthymoma patients. Arch Neurol 2001, 58:885–890.

    Article  PubMed  CAS  Google Scholar 

  12. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis foundation of America; Jaretzki A, Barohn RJ, Ernstoff RM, et al.: Myasthenia gravis: recommendations for clinical research standards. Neurology 2000, 55:16–23. Guidelines developed by a Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America (MGFA) include a revised Clinical Classification, a MGFA Therapy Status, MGFA Postintervention Status, Thymectomy classification, and recommendations to develop clinical outcome measures specific for MG.

    PubMed  Google Scholar 

  13. Barohn RJ, McIntire D, Herbelin L, et al.: Reliability testing of the quantitative myasthenia gravis score. Ann NY Acad Sci 1998, 841:769–772.

    Article  PubMed  CAS  Google Scholar 

  14. Wolfe GI, Herbelin L, Nations SP, et al.: Myasthenia gravis activities of daily living profile. Neurology 1999, 52:1487–1489. Validation of a simple eight-question survey of myasthenia gravia symptoms. Reliable, easy-to-administer, and it correlates well with the Quantitative Myasthenia Gravis score. It should be useful as a secondary efficacy measurement in clinical trials.

    PubMed  CAS  Google Scholar 

  15. Paul RH, Nash JM, Cohen RA, Gilchrist JM, Goldstein JM: Quality of life and well-being of patients with myasthenia gravis. Muscle Nerve 2001, 24:512–516.

    Article  PubMed  CAS  Google Scholar 

  16. Gronseth GS, Barohn RJ: Practice parameter: thymectomy for autoimmune myasthenia gravis (an evidence-base review). Report of the Quality Standard Subcommittee of the American Academy of Neurology. Neurology 2000, 55:7–15. Systematic review of the controlled, but not randomized, studies describing outcomes in myasthenia gravis (MG) patients undergoing and not undergoing thymectomy. It concludes that thymectomy is recommended as an option to increase the probability of remission or improvement in patients with nonthymomatous autoimmune MG, based on Class II evidence.

    PubMed  CAS  Google Scholar 

  17. Yeh JH, Chu HC: Plasmapheresis in myasthenia gravis. A comparative study of daily versus alternate daily schedule. Acta Neurol Scand 1999, 99:147–151.

    PubMed  CAS  Google Scholar 

  18. Howard JF: Intravenous immunoglobulin for the treatment of acquired myasthenia gravis. Neurology 1998, 51:S30-S36.

    PubMed  Google Scholar 

  19. Pascuzzi RM, Coslett HB, Johns TR: Long-term corticosteroid treatment of myasthenia gravis: report of 116 patients. Ann Neurol 1984, 290:81–84.

    Google Scholar 

  20. Palace J, Newsom-Davis J, Lecky B, and the myasthenia gravis Study Group: A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis. Neurology 1998, 50:1778–1783.

    PubMed  CAS  Google Scholar 

  21. Hojo M, Morimoto T, Maluccio M, et al.: Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 1999, 397:530–534.

    Article  PubMed  CAS  Google Scholar 

  22. Tindall R, Rollins J, Phillips J, et al.: Preliminary results of a double-blind, randomized, placebo-controlled trial of cyclosporine in myasthenia gravis. N Engl J Med 1987, 316:719–724.

    Article  PubMed  CAS  Google Scholar 

  23. Ciafaloni E, Nikhar N, Massey JM, Sanders DB: Retrospective analysis of the use of cyclosporine in myasthenia gravis. Neurology 2000, 55:448–450. Retrospective analysis of the use of cyclosporine in 57 myasthenia gravis (MG) patients taking this drug for an average of 3.5 years showed clinical improvement in 96%. Side effects included malignancy in 11% and elevation of serum creatinine in 28% of the patients.

    PubMed  CAS  Google Scholar 

  24. Allison AC, Eugui EM: Purine metabolism and immunosuppressive effects of mycophenolate mofetil (MMF). Clin Transplant 1996, 10:77–84.

    PubMed  CAS  Google Scholar 

  25. Lipsky JJ: Mycophenolate mofetil. Lancet 1996, 348:1357–1359.

    Article  PubMed  CAS  Google Scholar 

  26. Epinette WW, Parker CM, Jones EL, Greist MC: Mycophenolic acid for psoriasis. J Am Acad Dermatol 1987, 17:962–971.

    Article  PubMed  CAS  Google Scholar 

  27. Ciafaloni E, Massey JM, Tucker-Lipscomb B, Sanders DB: Mycophenolate mofetil for myasthenia gravis: an open-label pilot trial. Neurology 2000, 56:97–99. In an open-label trial of mycophenolate mofetil, improvement was demonstrated in eight out of 12 patients who had refractory myasthenia gravis (MG) or who were taking only corticosteroids and required additional immunosuppression. No major side effects were observed.

    Google Scholar 

  28. Hauser RA, Malek AR, Rosen R: Successful treatment of a patient with severe refractory myasthenia gravis using mycophenolate mofetil. Neurology 1998, 51:912–913.

    PubMed  CAS  Google Scholar 

  29. Chaudhry V, Cornblath DR, Griffin JW, O’Brien R, Drachman DB: Mycophenolate mofetil: a safe and promising immunosuppressant in neuromuscular diseases. Neurology 2000, 56:94–96.

    Article  Google Scholar 

  30. Meriggioli MN, Rowin J: Treatment of myasthenia gravis with mycophenolate mofetil: a case report. Muscle Nerve 2000, 23:1287–1289.

    Article  PubMed  CAS  Google Scholar 

  31. Mowzoon N, Sussman A, Bradley WG: Mycophenolate mofetil (CellCept) treatment of myasthenia gravis, chronic inflammatory polyneuropathy and inclusion body myositis. J Neurol Sci 2001, 185:119–122.

    Article  PubMed  CAS  Google Scholar 

  32. Letko E, Bhol K, Pinar V, Foster, Ahmed AR: Tacrolimus (FK 506). Ann Allergy Immunol 1999, 83:179–190.

    Article  CAS  Google Scholar 

  33. Yoshikawa H, Iwasa K, Satoh K, Takamori M: FK506 prevents induction of rat experimental autoimmune myasthenia gravis. J Autoimmunity 1997, 10:11–16.

    Article  CAS  Google Scholar 

  34. Wood AM: Rituximab: an innovative therapy for non-Hodgkin’s lymphoma. Am J Health Syst Pharm 2001, 1:215–232.

    Google Scholar 

  35. Zaja F, Russo D, Fuga G, Perella G, Baccarani M: Rituximab for myasthenia gravis developing after bone marrow transplant. Neurology 2000, 55:1062–1063.

    PubMed  CAS  Google Scholar 

  36. Araga S, Xu L, Nakashima K, Villain M, Blalock JE: A peptide vaccine that prevents experimental autoimmune myasthenia gravis by specifically blocking T cell help. FASEB J 2000, 14:185–196. A single monoclonal antibody against a complementary peptide for the dominant T-cell epitope on the acetylcholine receptor lessened the incidence and severity of experimental autoimmune myasthenia gravis.

    PubMed  CAS  Google Scholar 

  37. Xu L, Villain M, Galin FS, Araga S, Blalock E: Prevention and reversal of experimental autoimmune myasthenia gravis by a monoclonal antibody against acetylcholine receptorspecific T cells. Cellular Immunol 2001, 208:107–114.

    Article  CAS  Google Scholar 

  38. McAnally JL, Xu L, Villain M, Blalock JE: The role of adjuvants in the efficacy of a peptide vaccine for myasthenia gravis. Exper Biol Med 2001, 226:307–311.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciafaloni, E., Sanders, D.B. Advances in myasthenia gravis. Curr Neurol Neurosci Rep 2, 89–95 (2002). https://doi.org/10.1007/s11910-002-0058-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-002-0058-6

Keywords

Navigation