Skip to main content

Semantic memory


Our concepts about objects, states, and events are stored in a cognitive structure termed semantic memory. There are several types of neurologic disorders that may cause impairments of semantic memory. Clinical evaluations of these impairments are complex, because semantic memory is linked to other cognitive systems that, when damaged, may produce related syndromes or difficulties. In an attempt to gain further understanding of these breakdown patterns, we review data from both neuropsychologic and brain activity research that have been concerned with how object concepts are represented and localized in the brain. Although these data have spawned varying and controversial views regarding the content and organization of semantic knowledge, converging evidence suggests that semantic memory is mainly localized in the posterior region of the left temporal lobe, and that particular categories of knowledge may be represented in different but overlapping regions within this area.

This is a preview of subscription content, access via your institution.

References and Recommended Reading

  1. 1.

    Goodglass H, Baker E: Semantic field, naming, and auditory comprehension in aphasia. Brain Lang 1976, 3:359–374.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Goodglass H, Wingfield A, Ward SE: Judgments of concept similarity by normal and aphasic subjects: relation to naming and comprehension. Brain Lang 1997, 56:138–158.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Caramazza A, Berndt RS, Brownell HH: The semantic deficit hypothesis: perceptual parsing and object classification by aphasic patients. Brain Lang 1982, 15:161–189.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Chertkow H, Bub D, Deaudon C, Whitehead V: On the status of object concepts in aphasia. Brain Lang 1997, 58:203–232.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Hart J Jr, Gordon B: Delineation of single-word semantic comprehension deficits in aphasia, with anatomical correlation. Ann Neurol 1990, 27:226–231.

    PubMed  Article  Google Scholar 

  6. 6.

    Posner MI, Petersen SE, Raichle ME: Localization of cognitive operations in the human brain. Science 1988, 240:1627–1631.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Demb JB, Desmond JE, Wagner AD, et al.: Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity. J Neurosci 1995, 15:5870–5878.

    PubMed  CAS  Google Scholar 

  8. 8.

    Noppeney UP, Price CJ: A PET study of stimulus- and taskinduced semantic processing. Neuroimage 2002, 15:927–935. An interesting study showing that the access of semantic and phonologic information in memory involves brain regions different from those involved when decisions are made when using semantic knowledge in particular tasks.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Whatmough C: Separable effects of familiarity and semantic category on picture naming: an oxygen-15 PET study. Presented at Society for Neuroscience, Miami, FL, 1999.

  10. 10.

    Chertkow H: Altered activation of cerebral cortex in Alzheimer’s Disease during picture naming: a positron emission tomographic study. Presented at Cognitive Neuroscience Society, San Francisco, CA, 2000.

  11. 11.

    Hyman BT: The neuropathological diagnosis of Alzheimer’s disease: clinical-pathological studies. Neurobiol Aging 1997, 18:S27-S32.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Braak H, Braak E: Neuropathological staging of Alzheimerrelated changes. Acta Neuropathol 1991, 82:239–259.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Grossman M, Payer F, Onishi K, et al.: Constraints on the cerebral basis for semantic processing from neuroimaging studies of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1997, 63:152–158.

    PubMed  CAS  Article  Google Scholar 

  14. 14.

    Warrington EK, Shallice T: Category specific semantic impairments. Brain 1984, 107:829–854.

    PubMed  Article  Google Scholar 

  15. 15.

    Hodges JR, Patterson K: Is semantic memory consistently impaired early in the course of Alzheimer’s disease? Neuroanatomical and diagnostic implications. Neuropsychologia 1995, 33:441–459.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Sacchett C, Humphreys G: Calling a squirrel a squirrel but a canoe a wigwam: a category-specific deficit for artefactual objects and body parts. Cogn Neuropsychol 1992, 9:73–86.

    Google Scholar 

  17. 17.

    Farah MJ, McClelland JL: A computational model of semantic memory impairment: modality specificity and emergent category specificity. J Exp Psychol 1991, 120:339–357.

    CAS  Google Scholar 

  18. 18.

    Caramazza A, Shelton J: Domain-specific knowledge systems in the brain: the animate-inanimate distinction. J Cogn Neurosci 1998, 10:1–34.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Carey S: Conceptual Change in Childhood. Cambridge, Massachusetts: MIT Press; 1985.

    Google Scholar 

  20. 20.

    Keil FC: Concepts, Kinds, and Cognitive Development. Cambridge, Massachusetts: MIT Press; 1989.

    Google Scholar 

  21. 21.

    Gelman S: Development of induction within natural kinds and artificial categories. Cogn Psychol 1988, 20:65–95.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Gonnerman L, Andersen ES, Devlin JT, Kempler D, Seidenberg MS: Double dissociation of semantic categories in Alzheimer’s disease. Brain Lang 1997, 57:254–279.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Garrard P, Patterson K, Watson PC, Hodges JR: Category specific semantic loss in dementia of Alzheimer’s type. Brain 1998, 121:633–646.

    PubMed  Article  Google Scholar 

  24. 24.

    Moss DE: Two-eyes of a see-through: impaired and intact semantic knowledge in a case of selective deficit for living things. Neurocase 1998, 10:362–376.

    Google Scholar 

  25. 25.

    Moss H: Exploring the loss of semantic memory in semantic dementia: evidence from a primed monitoring study. Neuropsychology 1995, 9:16–26.

    Article  Google Scholar 

  26. 26.

    Dixon MJ, Bub DN, Arguin M: Semantic and visual determinants of face recognition in a prosopagnosic patient. J Cogn Neurosci 1998, 10:362–376.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Laiacona M, Barbarotto R, Capitani E: Semantic category dissociations in naming: is there a gender effect in Alzheimer’s disease? Neuropsychologia 1998, 36:407–419.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Warrington EK, McCarthy RA: Categories of knowledge: further fractionations and an attempted integration. Brain 1987, 110:1273–1296.

    PubMed  Article  Google Scholar 

  29. 29.

    Chao LL, Haxby JV, Martin A: Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nature Neurosci 1999, 2:913–919. Neuroimaging study suggesting that categories of objects are represented in terms of their identifying features, rather than by their category membership.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Chao LL, Martin A: Cortical regions associated with perceiving, naming, and knowing about colors. J Cogn Neurosci 1999, 11:25–35.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Martin A, Haxby JV, Lalonde FM, Wiggs CL, Ungerleider LG: Discrete cortical regions associated with knowledge of color and knowledge of action. Science 1995, 270:102–105.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Martin A, Wiggs CL, Ungerleider LG, Haxby JV: Neural correlates of category-specific knowledge. Nature 1996, 379:649–652.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Devlin JT, et al.: Is there an anatomical basis for categoryspecificity? Semantic memory study in PET and fMRI. Neuropsychologia 2002, 40:54–75. Results of a positron emission tomography study and functional magnetic resonance imaging study suggesting that different semantic categories are represented in a single distributed brain system.

    PubMed  Article  Google Scholar 

  34. 34.

    Damasio H, Grabowski TJ, Tranel D, Hichwa RD, Damasio AR: A neural basis for lexical retrieval [published erratum appears in Nature 1996, 381:810]. Nature 1996, 380:499–505.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Cappa SF, Perani D, Schnur T, Tettamanti M, Fazio F: The effects of semantic category and knowledge type on lexical-semantic access: a PET study. Neuroimage 1998, 8:350–359.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Gerlach C, Law I, Gade A, Paulson OB: Perceptual differentiation and category effects in normal object recognition: a PET study. Brain 1999, 122:2159–2170.

    PubMed  Article  Google Scholar 

  37. 37.

    Gorno-Tempini ML, Cipolotti L, Price CJ: Which level of object processing generates category specific differences in brain activation? Proc R Soc London B 2000, 12:1253–1258.

    Article  Google Scholar 

  38. 38.

    Grossman M, Koenig P, DeVita C, et al.: The neural basis for category-specific knowledge: an fMRI study. Neuroimage 2002, 15:936–948. This functional magnetic resonance imaging study shows that artefacts and abstract nouns recruit similar cortical regions of the brain (left prefrontal and left posterolateral temporal regions). These results are inconsistent with the view that artefacts are represented in terms of sensory-motor properties, presumably because such properties would presumably not be involved in interpreting meanings of abstract nouns. These neural networks would differ from those involving animal concepts, which were found to be preferentially associated with visually based processing regions of the left ventromedical occipital cortex.

    PubMed  Article  Google Scholar 

  39. 39.

    Moore CJ, Price CJ: A functional neuroimaging study of the variables that generate category-specific object processing differences. Brain 1999, 122:943–962. An important study examining how stimulus modality (visual vs verbal) and semantic category information interact in different cortical brain regions.

    PubMed  Article  Google Scholar 

  40. 40.

    Kraut AM, Moo LR, Segal JB, Hart J: Neural activation during an explicit categorization task: category-or feature-specific effects? Cogn Brain Res 2002, 13:213–220.

    Article  Google Scholar 

  41. 41.

    Mummery CJ, Patterson K, Hodges JR, Price CJ: Functional neuroanatomy of the semantic system: divisible by what? J Cogn Neurosci 1998, 10:766–777.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Mummery CJ: Generating ‘tiger’ as an animal name or a word beginning with T: differences in brain activation [published erratum appears in Proc R Soc Lond B Biol Sci 1996, 263:1755–1756]. Proc R Soc London B Biol Sci 1996, 263:989–995.

    Article  CAS  Google Scholar 

  43. 43.

    Perani D, Cappa SF, Bettinardi V, et al.: Different neural systems for the recognition of animals and man-made tools. Neuroreport 1995, 6:1637–1641.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Perani D, Schnur T, Tettamanti M, et al.: Word and picture matching: a PET study of semantic category effects. Neuropsychologia 1999, 37:293–306.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Thompson-Schill SL, Aguirre GK, D’Esposito M, Farah MJ: A neural basis for category and modality specificity of semantic knowledge. Neuropsychologia 1999, 37:671–676.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Fung TD, Chertkow H, Paus T, Whatmough C: IMS of the left inferior temporal cortex slows picture naming. J Int Neuropsychol Soc 2002, 8:206.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saumier, D., Chertkow, H. Semantic memory. Curr Neurol Neurosci Rep 2, 516–522 (2002).

Download citation


  • Positron Emission Tomography Study
  • Semantic Memory
  • Biologic Object
  • Picture Naming
  • Semantic Knowledge