Skip to main content
Log in

Childhood sleep disorders: Diagnostic and therapeutic approaches

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Pediatric sleep physiology begins with development of the sleep/wake cycle, and the origins of active versus quiet sleep. The 24-hour circadian cycle becomes established at 3 to 6 months. Sleep disorders are rationally approached in pediatrics as age-related. Disorders during infancy commonly include mild, usually self-limited conditions such as sleep-onset association disorder, excessive nighttime feedings, and poor limit-setting. These require behavioral management to avoid long-term deleterious sleep habits. In contrast, other sleep disorders are more ominous, including sudden infant death syndrome (SIDS), central congenital hypoventilation syndrome, and sleep apnea. Childhood is generally the golden age of sleep, with brief latency, high efficiency, and easy awakening. Parasomnias, sometimes stage specific, are manifest here. Adolescents have sleep requirements similar to preteens, posing a challenge for them to adapt to school schedules and lifestyles. Narcolepsy, usually diagnosed in adolescence or early adulthood, is a lifelong sleep disorder that has led to the identification of the hypocretin/orexin neurotransmitter system. This will lead to enhanced understanding of what regulates stage rapid eye movement, and to novel therapeutic advances for hypersomnolence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Stores G: A Clinical Guide to Sleep Disorders in Children and Adolescents. Cambridge: Cambridge University Press; 2001. This 150-page monograph is replete with clinical wisdom and representative case reports. Recommended reading for clinicians in pediatric sleep.

    Google Scholar 

  2. Lin-Dyken DC, Kyken ME: Sleep in infancy, childhood, and youth. In Clinical Handbook of Sleep Disorders. Edited byCulebras A. Boston: Butterworth-Heinemann; 1996:345–374.

    Google Scholar 

  3. Owens JA, Sprito A, McGuinn M, Nobile C: Sleep habits and sleep disturbance in elementary school-age children. Dev Behav Peds 2000, 21:27–36.

    CAS  Google Scholar 

  4. Buck G, Cookfair D, Michalek A, et al.: Intrauterine growth retardation and risk of sudden infant death syndrome. Am J Epidemiol 1989, 129:874–884.

    PubMed  CAS  Google Scholar 

  5. American Academy of Pediatrics Task Force on Infant Positioning and SIDS: Positioning and SIDS. Pediatrics 1992, 89:1120–1126.

    Google Scholar 

  6. American Academy of Pediatrics Task Force on Infant Positioning and SIDS. Positioning and sudden infant death syndrome (SIDS): Update. Pediatrics 1996, 312:1397–1398.

    Google Scholar 

  7. Willinger M, Hoffman HJ, Kuo-Tsung W, et al.: Factors associated with the transition to nonprone sleep positions of infants in the United States. The National Infant Sleep Position Study. JAMA 1998, 280:329–335.

    Article  PubMed  CAS  Google Scholar 

  8. Gaultier C: Sleep apnea in infants. Sleep Med Rev 1999, 3:303–312.

    Article  Google Scholar 

  9. Ferber R: Solve Your Child’s Sleep Problems. New York: Simon & Schuster; 1985.

    Google Scholar 

  10. Sheldon SH, Jacobsen J: REM-sleep motor disorder in children. J Child Neurol 1998, 13:257–260.

    PubMed  CAS  Google Scholar 

  11. Lovering JS, Tallett SE, McKendry JB: Oxybutynin efficacy in the treatment of primary enuresis. Pediatrics 1988, 82:104–106.

    PubMed  CAS  Google Scholar 

  12. Fjellestad-Paulsen A, Wille S, Harris AS: Comparison of intranasal and oral desmopressin for nocturnal enuresis. Arch Dis Child 1987, 62:674–677.

    PubMed  CAS  Google Scholar 

  13. Stein MA: Unravelling sleep problems in treated and untreated children with ADHD. J Child Adolesc Psychopharmacol 1999, 9:157–168.

    PubMed  CAS  Google Scholar 

  14. Walters A, Mandelbaum DE, Lewin DS, et al.: Dopaminergic therapy in children with Restless Legs/Periodic limb movements in sleep and ADHD. Dopaminergic Therapy Study Group. Pediatr Neurol 2000, 22:182–186.

    Article  PubMed  CAS  Google Scholar 

  15. Malow BA, Kushwaha R, Lin X, Morton KJ, Aldrich M: Relationship of interictal epileptiform discharges to sleep depth in partial epilepsy. Electroencephalogr Clin Neurophyisol 1997, 102:20–26.

    Article  CAS  Google Scholar 

  16. Dinner DS, Luders HO: Relationship of epilepsy and sleep. In Epilepsy and Sleep: Physiological and Clinical Relationships. San Diego: Academic Press; 2001:2–18. s is the overview chapter in an elegant 300-page book that covers the relationship between sleep and epilepsy, including chapters devoted to electrophysiology, sleep deprivation, neonatal aspects, monitoring, and epilepsy imitators including parasomnias, rapid eye movement sleep behavior disorder, nocturnal paroxysmal dystonia, and cataplexy.

    Google Scholar 

  17. Kirk V, Kahn A, Brouillette RT: Diagnostic approach to obstructive sleep apnea in children. Sleep Med Rev 1998, 2:255–269.

    Article  PubMed  CAS  Google Scholar 

  18. Carroll JL, Loughlin GM: Primary snoring in children. In Principles and Practice of Sleep Medicine in the Child. Edited byFerber R, Kryger M. Philadelphia: WB Saunders; 1995:155–161.

    Google Scholar 

  19. Downey R, Perkin RM, MacQuarrie J: Upper airway resistance syndrome: sick, symptomatic but unrecognized. Sleep 1993, 16:620–623.

    PubMed  Google Scholar 

  20. Marcus CL: Obstructive sleep apnea: differences between children and adults. Sleep 2000, 23:S140-S141.

    PubMed  Google Scholar 

  21. Guilleminault C, Pelayo R, Leger D, Clerk A, Bocian RC: Recognition of sleep related breathing in children. Pediatrics 1996, 98:871–882.

    PubMed  CAS  Google Scholar 

  22. Suen J, Arnold J, Brooks L: Adenotonsillectomy for treatment of obstructive apnea in children. Arch Otolaryngol 1995, 5:525–530.

    Google Scholar 

  23. Wolfson AR, Carskadon MA: Sleep schedules and daytime functioning in adolescents. Child Dev 1998, 69:875–887.

    Article  PubMed  CAS  Google Scholar 

  24. Carskadon MA, Acebo C, Wolfson A, Tzischinski O, Darley C: REM Sleep on MSLTS in high school students related to circadian phase. Sleep Res 1997, 26:705.

    Google Scholar 

  25. Carskadon MA, Wolfson AR, Acebo C, et al.: Adolescent sleep patterns, Circadian timing, and sleepiness at a transition to early school days. Sleep 1998, 21:871–881.

    PubMed  CAS  Google Scholar 

  26. Stores G: Recognition and management of narcolepsy. Arch Dis Child 1999, 81:519–524.

    Article  PubMed  CAS  Google Scholar 

  27. Challamel MJ, Mazzola ME, Nevsimalova S, et al.: Narcolepsy in children. Sleep 1994, 17:S17-S20.

    PubMed  CAS  Google Scholar 

  28. Guilleminault C, Pelayo R: Narcolepsy in prepubertal children. Ann Neurol 1998, 43:135–142.

    Article  PubMed  CAS  Google Scholar 

  29. Dahl RE, Holttum J, Trubnick L: A clinical picture of child and adolescent narcolepsy. J Am Acad Child Adolesc Psychiatry 1997, 6:834–841.

    Google Scholar 

  30. Mignot E, Lin X, Anigoni J, et al.: DQB1*0602 and DQA1*0602 (DQ1) are better markers than DR2 for narcolepsy in Caucasian and black Americans. Sleep 1994, 17:60–67.

    Google Scholar 

  31. Mignot E : Genetic and familial aspects of narcolepsy. Neurology 1998, 50(suppl. 1):S16-S22.

    PubMed  CAS  Google Scholar 

  32. Lin L, Faraco J, Li R, et al.: The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor gene. Cell 1999, 98:365–376.

    Article  PubMed  CAS  Google Scholar 

  33. de Lecea L, Kilduff TS, Peyron C, Gao X, et al.: The hypocretins: hypothalamus-specific peptides with neuroexcitatory eactivity. Proc Natl Acad Sci USA 1998, 95:322–327.

    Article  PubMed  Google Scholar 

  34. Sakurai T, Amemiya A, Ishii M, et al.: Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998, 92:573–585.

    Article  PubMed  CAS  Google Scholar 

  35. van den Pol AN, Gao XB, Obrietan K, Kilduff TS, et al.: Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/ orexin. J Neurosci 1998, 18:7962–7971.

    PubMed  Google Scholar 

  36. Peyron C, Tighe DK, van den Pol AN, et al.: Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 1998, 18:9996–10015.

    PubMed  CAS  Google Scholar 

  37. Nambu T, Sakurai T, Mizukami K, et al.: Distribution of orexin neurons in the adult rat brain. Brain Res 1999, 827:243–260.

    Article  PubMed  CAS  Google Scholar 

  38. Nishino S, Ripley B, Overeem S, et al.: Hypocretin (orexin) deficiency in human narcolepsy. Lancet 2000, 355:39–40. s is the first article to identify the neuropeptide, hypocretin, in normal cerebrospinal fluid (CSF). The peptide was absent from CSF in seven of nine patients with narcolepsy but present (250 to 285 pcg/ mL) in all eight control patients.

    Article  PubMed  CAS  Google Scholar 

  39. Thannickal TC, Moore RY, Nienhuis R, et al.: Reduced number of hypocretin neurons in human narcolepsy. Neuron 2000, 27:469–474. eticulous postmortem study of four narcolepsy patients 4 to 12 years after death. The number of hypocretin cells in the lateral hypothalamus was reduced by 85% to 95% compared with normal subjects.

    Article  PubMed  CAS  Google Scholar 

  40. Peyron C, Faraco J, Rogers W, et al.: A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 2000, 6:991–997. important study in the recent scientific breakthroughs in narcolepsy research. In six human narcoleptic postmortem brains, severe microscopic reductions of hypocretin generated cells were found in the hypothalamus and its axon terminals in the cerebrum and pons. An arginine mutation in the hypocretin signal peptide was identified in an infantile-onset case.

    Article  PubMed  CAS  Google Scholar 

  41. Horvth TL, Peyron C, Diano S, et al.: Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol 1999, 415:145–159.

    Article  Google Scholar 

  42. Scammell TE, Nishino S, Mignon E, Saper CB: Narcolepsy and low CSF orexin (hypocretin) concentration after a diencephalic stroke. Neurology 2001, 56:1751–1753.

    PubMed  CAS  Google Scholar 

  43. Arii J, Kanbayashi T, Tanabe Y, Ono J, Nishino S, Kohno Y: A hypersomnolent girl with decreased CSF hypocretin level after removal of a hypothalamic tumor. Neurology 2001, 56:1775–1776.

    PubMed  CAS  Google Scholar 

  44. Broughton R, Fleming J, George C, et al.: Randomized, doubleblind, placebo-controlled crossover trial of modafinil in the treatment of excessive daytime sleepiness in narcolepsy. Neurology 1997, 49:444.

    PubMed  CAS  Google Scholar 

  45. Chemelli RM, Willie JT, Sinton CM, et al.: Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 1999, 98:437–451.

    Article  PubMed  CAS  Google Scholar 

  46. Kaufman Y, Tzischinsky O, Epstein R, et al.: Long-term sleep disturbances in adolescents after minor head injury. Pediatr Neurol 2001, 24:129–134.

    Article  PubMed  CAS  Google Scholar 

  47. Diagnostic Classification Steering Committee. MJ Thorpy, Chairman: ICSD-International Classification of Sleep Disorders: Diagnostic and Coding Manual. American Sleep Disorders Association; Rochester: 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearl, P.L. Childhood sleep disorders: Diagnostic and therapeutic approaches. Curr Neurol Neurosci Rep 2, 150–157 (2002). https://doi.org/10.1007/s11910-002-0024-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-002-0024-3

Keywords

Navigation