Skip to main content

Advertisement

Log in

New developments in animal models of Alzheimer’s disease

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized by deterioration in mental function leading to dementia, deposition of amyloid plaques and neurofibrillary tangles (NFTs), and neuronal loss. The major component of plaques is the amyloid-b peptide (Ab), whereas NFTs are assemblies of hyperphosphorylated forms of the microtubule-associated protein tau. Electron microscopy of NFTs reveals structures known as paired helical filaments (PHFs). In familial AD (FAD), mutations in three distinct genes drive Aβ synthesis by favoring endoproteolytic secretase cleavages that liberate Aβ from the Alzheimer b-amyloid precursor protein (APP). This suggests that excess Ab initiates a pathogenic cascade in humans that culminates in all the pathologic and cellular hallmarks of AD. Building upon the knowledge of FAD mutations, incremental technical advances have now allowed reproduceable creation of APP transgenic mice that exhibit AD-like amyloid pathology and Aβ burdens. These transgenic mouse lines also exhibit deficits in spatial reference and working memory, with immunization against Aβ abrogating both AD-associated phenotypes. Besides establishing a proof of principle for Ab-directed therapies, these findings suggest a potential to identify individual elements in the pathogenic pathway that lead to cognitive dysfunction. Furthermore, transgenic APP mice with potent amyloid deposition will likely form a beachhead to capture the final elements of AD neuropathology—cell loss and NFTs composed of PHFs—that are missing from current transgenic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Vassar R, Bennett BD, Babu-Khan S, et al.: Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999, 286:735–741.

    Article  PubMed  CAS  Google Scholar 

  2. Fraser PE, Yang DS, Yu G, et al.: Presenilin structure, function and role in Alzheimer disease. Biochim Biophys Acta 2000, 1502:1–15.

    PubMed  CAS  Google Scholar 

  3. Golde TE, Eckman CB, Younkin SG: Biochemical detection of Abeta isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Biochim Biophys Acta 2000, 1502:172–187.

    PubMed  CAS  Google Scholar 

  4. Crook R, Verkkoneimi A, Perez-Tur J, et al.: A variant of Alzheimer’s disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin. Nat Med 1998, 4:452–455.

    Article  PubMed  CAS  Google Scholar 

  5. Naslund J, Haroutunian V, Mohs R, et al.: Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 2000, 283:1571–1577.

    Article  PubMed  CAS  Google Scholar 

  6. Lue LF, Kuo YM, Roher AE, et al.: Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 1999, 155:853–862.

    PubMed  CAS  Google Scholar 

  7. Corder EH, Saunders AM, Strittmatter WJ, et al.: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261:921–923.

    Article  PubMed  CAS  Google Scholar 

  8. Schmechel DE, Saunders AM, Strittmatter WJ, et al.: Increased vascular and plaque beta-A4 amyloid deposits in sporadic Alzheimer Disease patients with apolipoprotein e4. Proc Natl Acad Sci U S A 1993, 90:9649–9653.

    Article  PubMed  CAS  Google Scholar 

  9. Games D, Adams D, Alessandrini R, et al.: Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 1995, 373:523–527.

    Article  PubMed  CAS  Google Scholar 

  10. Hsiao KH, Chapman P, Nilsen S, et al.: Correlative memory deficits, Ab elevation, and amyloid plaques in transgenic mice. Science 1996, 274:99–102.

    Article  PubMed  CAS  Google Scholar 

  11. Sturchler-Pierrat C, Abramowski D, Duke M, et al.: Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 1997, 94:13287–13292.

    Article  PubMed  CAS  Google Scholar 

  12. Moechars D, Dewachter I, Lorent K, et al.: Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 1999, 274:6483–6492.

    Article  PubMed  CAS  Google Scholar 

  13. Hsiao KK, Borchelt DR, Olson K, et al.: Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 1995, 15:1203–1218.

    Article  PubMed  CAS  Google Scholar 

  14. Carlson GA, Borchelt DR, Dake A, et al.: Genetic modification of the phenotypes produced by amyloid precursor protein overexpression in transgenic mice. Hum Mol genet. 1997, 6:1951–1959.

    Article  PubMed  CAS  Google Scholar 

  15. Chishti MA, Yang DS, Janus C, et al.: Early-onset amyloid deposition and cognitive deficits in TgCRND8 mice expressing a double mutant form of APP695. J Biol Chem 2001, 276:21562–21570.

    Article  PubMed  CAS  Google Scholar 

  16. Lu DC, Rabizadeh S, Chandra S, et al.: A second cytotoxic proteolytic peptide derived from amyloid beta-protein precursor [comment]. Nat Med 2000, 6:397–404.

    Article  PubMed  CAS  Google Scholar 

  17. Vidal R, Frangione B, Rostagno A, et al.: A stop-codon mutation in the BRI gene associated with familial British dementia. Nature 1999, 399:776–781.

    Article  PubMed  CAS  Google Scholar 

  18. McLean CA, Cherny RA, Fraser FW, et al.: Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 1999, 46:860–866.

    Article  PubMed  CAS  Google Scholar 

  19. Janus C, D’Amelio S, Amitay O, et al.: Spatial learning in transgenic mice expressing familial Alzheimer disease alleles of presenilin 1. Neurobiol Dis 2000, 21:541–549.

    CAS  Google Scholar 

  20. Chui DH, Tanahashi H, Ozawa K, et al.: Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat Med 1999, 5:560–564.

    Article  PubMed  CAS  Google Scholar 

  21. Holtzman DM, Bales KR, Tenkova T, et al.: Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2000, 97:2892–2897.

    Article  PubMed  CAS  Google Scholar 

  22. Irizarry MC, Cheung BS, Rebeck GW, et al.: Apolipoprotein E affects the amount, form, and anatomical distribution of amyloid beta-peptide deposition in homozygous APP(V717F) transgenic mice. Acta Neuropathol (Berlin) 2000, 100:451–458.

    Article  CAS  Google Scholar 

  23. Capsoni S, Ugolini G, Comparini A, et al.: Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc Natl Acad Sci U S A 2000, 97:6826–6831.

    Article  PubMed  CAS  Google Scholar 

  24. Lewis J, McGowan E, Rockwood J, et al.: Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 2000, 25:402–405. First compelling demonstration of aggregated forms of tau in transgenic mice.

    Article  PubMed  CAS  Google Scholar 

  25. Kampers T, Pangalos M, Geerts H, et al.: Assembly of paired helical filaments from mouse tau: implications for the neurofibrillary pathology in transgenic mouse models for Alzheimer’s disease. FEBS Lett 1999, 451:39–44.

    Article  PubMed  CAS  Google Scholar 

  26. Spittaels K, Van den Haute C, Van Dorpe J, et al.: Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 1999, 155:2153–2165.

    PubMed  CAS  Google Scholar 

  27. Duff K, Knight H, Refolo LM, et al.: Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol Dis 2000, 7:87–98.

    Article  PubMed  CAS  Google Scholar 

  28. Patrick GN, Zukerberg L, Nikolic M, et al.: Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration [comment]. Nature 1999, 402:615–622.

    Article  PubMed  CAS  Google Scholar 

  29. Ahlijanian MK, Barrezueta NX, Williams RD, et al.: Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci U S A 2000, 97:2910–2915.

    Article  PubMed  CAS  Google Scholar 

  30. Hong M, Chen DC, Klein PS, Lee VM: Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 1997, 272:25326–25332.

    Article  PubMed  CAS  Google Scholar 

  31. Spittaels K, Van Den Haute C, Van Dorpe J, et al.: Glycogen synthase kinase-3beta phosphorylates protein tau and rescues the axonopathy in the central nervous system of human four-repeat tau transgenic mice. J Biol Chem 2000, 275:41340–41349.

    Article  PubMed  CAS  Google Scholar 

  32. Tesseur I, Van Dorpe J, Spittaels K, et al.: Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am J Pathol 2000, 156:951–964.

    PubMed  CAS  Google Scholar 

  33. Calhoun ME, Wiederhold KH, Abramowski D, et al.: Neuron loss in APP transgenic mice. Nature 1998, 395:755–756.

    Article  PubMed  CAS  Google Scholar 

  34. Geula C, Wu CK, Saroff D, et al.: Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity [comment]. Nat Med 1998, 4:827–831.

    Article  PubMed  CAS  Google Scholar 

  35. Albert MS: Cognitive and neurobiologic markers of early Alzheimer disease. Proc Natl Acad Sci U S A 1996, 93:13547–13551.

    Article  PubMed  CAS  Google Scholar 

  36. Janus C, Chishti MA, Westaway D: Transgenic mouse models of Alzheimer’s disease. BBA 2000, 1502:63–75.

    PubMed  CAS  Google Scholar 

  37. Janus C, Westaway D: Transgenic mouse models of Alzheimer’s disease. Physiol Behav 2001, in press.

  38. van Leuven F: Single and multiple transgenic mice as models for Alzheimer’s disease. Prog Neurobiol 2000, 61:305–312.

    Article  PubMed  Google Scholar 

  39. Chapman PF, White GL, Jones MW, et al.: Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 1999, 2:271–276.

    Article  PubMed  CAS  Google Scholar 

  40. Hsia AY, Masliah E, McConlogue L, et al.: Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci U S A 1999, 96:3228–3233. Elegant dissection of the effect of elevated amyloid-b upon synaptic functioning.

    Article  PubMed  CAS  Google Scholar 

  41. Chapman PF: Model behaviour. Nature 2000, 408:915–916.

    Article  PubMed  Google Scholar 

  42. St George-Hyslop PH, Westaway DA: Alzheimer’s disease. Antibody clears senile plaques [comment]. Nature 1999, 400:116–117.

    Article  PubMed  CAS  Google Scholar 

  43. Schenk D, Barbour R, Dunn W, et al.: Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999, 400:173–177. Ground-breaking study on the effects of active immunization against amyloid-b42 on plaque development and plaque clearance.

    Article  PubMed  CAS  Google Scholar 

  44. Bard F, Cannon C, Barbour R, et al.: Peripherally-administered antibodies against Ab peptide enter the CNS and reduce pathology in a mouse model of Alzheimer’s disease. Nat Med 2000, 6:916–919.

    Article  PubMed  CAS  Google Scholar 

  45. Weiner HL, Lemere CA, Maron R, et al.: Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann Neurol 2000, 48:567–579.

    Article  PubMed  CAS  Google Scholar 

  46. Nakagawa Y, Reed L, Nakamura M, et al.: Brain trauma in aged transgenic mice induces regression of established abeta deposits. Exp Neurol 2000, 163:244–252.

    Article  PubMed  CAS  Google Scholar 

  47. Holcomb L, Gordon M, McGowan E, et al.: Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nature Medicine 1998, 4:97–100.

    Article  PubMed  CAS  Google Scholar 

  48. Janus C, Pearson J, McLaurin J, et al.: Ab-immunization reduces behavioural impairment and dense-cored plaques in a model of Alzheimer’s Disease. Nature 2000, 408:979–982. One of two studies to show an effect of amyloid-b immunization on cognitive function as well as amyloid burden.

    Article  PubMed  CAS  Google Scholar 

  49. Morgan D, Diamond DM, Gottschall PE, et al.: A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 2000, 408:982–985. Assessment of the effect of amyloid b-immunization on cognitive function in a radial water-maze paradigm that addresses working memory.

    Article  PubMed  CAS  Google Scholar 

  50. Chen G, Chen KS, Knox J, et al.: A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 2000, 408:975–979.

    Article  PubMed  CAS  Google Scholar 

  51. Dodart JC, Meziane H, Mathis C, et al.: Behavioral disturbances in transgenic mice overexpressing the V717F beta-amyloid precursor protein. Behav Neurosci 1999, 113:982–990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janus, C., Phinney, A.L., Chishti, M.A. et al. New developments in animal models of Alzheimer’s disease. Curr Neurol Neurosci Rep 1, 451–457 (2001). https://doi.org/10.1007/s11910-001-0105-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-001-0105-8

Keywords

Navigation