Skip to main content

Advertisement

Log in

Streptococcus pneumoniae: Activity of newer agents against penicillin-resistant strains

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Strains of pneumococci resistant to antimicrobial agents have been reported on all continents. In 1997, more than 50% of strains in the United States were not susceptible to penicillin, and 30% were resistant to macrolides. In addition, many strains are resistant to multiple agents, including β-lactams, macrolides, clindamycin, chloramphenicol, tetracyclines, and trimethoprim-sulfamethoxazole. Although resistance to β-lactams in nonmeningeal infections can usually be overcome by parenteral administration, clinically significant resistance is an important limitation in meningitis and with oral administration of β-lactams. Decisions about treatment of pneumococcal infection are based on the site of infection, the degree of resistance to penicillin G, the presence of resistance to other agents, the severity of disease, the presence of underlying conditions, and the dose and route of administration of antimicrobial agents. The application of pharmacokinetic and pharmacodynamic variables to pneumococci has greatly improved the interpretation of susceptibility data and the development of clinically relevant breakpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Schmidt LH, Sesler CL: Development of resistance to penicillin by pneumococci. Proc Soc Exp Biol Med 1943, 53:353–357.

    Google Scholar 

  2. Appelbaum PC: Antimicrobial resistance in Streptococcus pneumoniae: an overview. Clin Infect Dis 1992, 15:77–83.

    PubMed  CAS  Google Scholar 

  3. Jacobs MR: Treatment and diagnosis of infections caused by drug-resistant Streptococcus pneumoniae. Clin Infect Dis 1992, 15:119–127.

    PubMed  CAS  Google Scholar 

  4. Jacobs MR, Appelbaum PC: Antibiotic-resistant pneumococci. Reviews in Medical Microbiology. 1995, 6:77–93.

    Google Scholar 

  5. Jacobs MR, Bajaksouzian S, Lin G, Appelbaum PC: Variation in antimicrobial resistance of community isolates of Streptococcus pneumoniae by age, region and disease [abstract]. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; September 1998:C-016. Currently 17% of community isolates of pneumococci are penicillinintermediate, 33% are pencillin-resistant, and 30% are macrolide-resistant. Resistance rates are highest in children under 2 years of age, and in isolates from ear, sinus, and nasopharyngeal specimens.

  6. Jacobs MR, Koornhof HJ, Robins-Browne RM, et al.: Emergence of multiply resistant pneumococci. N Engl J Med 1978, 299:735–740.

    Article  PubMed  CAS  Google Scholar 

  7. National Committee for Clinical Laboratory Standards: In Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, edn 4. M7-A4. Wayne, PA: National Committee for Clinical Laboratory Standards; 1995.

    Google Scholar 

  8. Linares J, Perez JL, Garau J, Martin R: Cotrimoxazole resistance in pneumococci. Eur J Clin Microbiol Infect Dis 1983, 2:473–474.

    Article  CAS  Google Scholar 

  9. National Committee for Clinical Laboratory Standards: In Performance Standards for Antimicrobial Susceptibility Testing; Eighth Informational Supplement. M100-S8. Wayne, PA: National Committee for Clinical Laboratory Standards; 1998.

    Google Scholar 

  10. Craig WA, Andes D: Pharmacokinetics and pharmacodynamics of antibiotics in otitis media. Pediatr Infect Dis J 1996, 15:255–259.

    Article  PubMed  CAS  Google Scholar 

  11. Craig WA: Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998, 26:1–10. Decription of pharmacokinetic and pharmacodynamic principles applied to antimicrobial agents, and correlation of these principles with clinical outcome.

    PubMed  CAS  Google Scholar 

  12. Sutcliffe J, Grebe T, Tait-Kamradt A, Wondrack L: Detection of erythromycin resistant determinants by PCR. Antimicrob Agents Chemother 1996, 40:2562–2566.

    PubMed  CAS  Google Scholar 

  13. Tweardy DJ, Jacobs MR, Speck WT: Susceptibility of penicillinresistant pneumococci to eighteen antimicrobials: implications for treatment of meningitis. J Antimicrob Chemother 1983, 12:133–139.

    Article  PubMed  CAS  Google Scholar 

  14. Fremaux A, Sissia G, Geslin P: Antimicrobial activity of 12 beta-lactam antibiotics and 5 other antibiotics (glycopeptides, fluoroquinolones, rifampin) against penicillin resistant S. pneumoniae. J Chemother 1991, 3:108–110.

    Google Scholar 

  15. Spangler SK, Jacobs MR, Appelbaum PC: Susceptibilities of 185 penicillin-susceptible and -resistant pneumococci to WY-49605 (SUN/SY 5555), a new oral penem, compared with those to penicillin G, amoxicillin, amoxicillin-clavulanate, cefixime, cefaclor, cefpodoxime, cefuroxime, and cefdinir. Antimicrob Agents Chemother 1994, 38:2902–2904.

    PubMed  CAS  Google Scholar 

  16. Liñares J, Perez JL, Garau J, et al.: Comparative susceptibilities of penicillin-resistant pneumococci to co-trimoxazole, vancomycin, rifampicin and fourteen β-lactam antibiotics. J Antimicrob Chemother 1984, 13:353–359.

    Article  PubMed  Google Scholar 

  17. Liñares J, Alonso T, Pèrez JL, et al.: Decreased susceptibility of penicillin-resistant pneumococci to twenty-four β-lactam antibiotics. J Antimicrob Chemother 1992, 30:279–272.

    Article  PubMed  Google Scholar 

  18. Pankuch GA, Jacobs MR, Appelbaum PC. Comparative activity of ampicillin, amoxycillin, amoxycillin/clavulanate and cefotaxime against 189 penicillin-susceptible and -resistant pneumococci. J Antimicrob Chemother 1995, 35:883–888.

    Article  PubMed  CAS  Google Scholar 

  19. Pankuch GA, Jacobs MR, Appelbaum PC: Susceptibilities of 200 penicillin-susceptible and -resistant pneumococci to piperacillin, piperacillin-tazobactam, ticarcillin, ticarcillin-clavulanate, ampicillin, ampicillin-sulbactam, ceftazidime, and ceftriaxone. Antimicrob Agents Chemother 1994, 38:2905–2907.

    PubMed  CAS  Google Scholar 

  20. Smith GM, Slocombe B, Abbott KH, Mizen LW: Activity of amoxicillin-clavulanate against penicillin-resistant Streptococcus pneumoniae in an experimental respiratory infection model in rats. Antimicrob Agents Chemother 1998, 42:813–817.

    PubMed  CAS  Google Scholar 

  21. Spangler SK, Jacobs MR, Pankuch GA, Appelbaum PC: Susceptibility of 170 penicillin-susceptible and -resistant pneumococci to six oral cephalosporins, four quinolones, desacetylcefotaxime, Ro 23-9424 and RP 67829. J Antimicrob Chemother 1993, 31:273–280.

    Article  PubMed  CAS  Google Scholar 

  22. Spangler SK, Jacobs MR, Appelbaum PC: Susceptibilities of 177 penicillin-susceptible and -resistant pneumococci to FK 037, cefpirome, cefepime, ceftriaxone, cefotaxime, ceftazidime, imipenem, biapenem, meropenem and vancomycin. Antimicrob Agents Chemother 1994, 38:898–900.

    PubMed  CAS  Google Scholar 

  23. Sloas M, Barrett F, Chesney J, et al.: Cephalosporin treatment failure in penicillin- and cephalosporin-resistant Streptococcus pneumoniae meningitis. Pediatr Infect Dis J 1992, 11:662–666.

    PubMed  CAS  Google Scholar 

  24. Bradley JS, Connor JD: Ceftriaxone failure in meningitis caused by Streptococcus pneumoniae with reduced susceptibility to beta-lactam antibiotics. Pediatr Infect Dis J 1991, 10:871–872.

    Article  PubMed  CAS  Google Scholar 

  25. Klugman KP, Dagan R: Randomized comparison of meropenem with cefotaxime for treatment of bacterial meningitis. Meropenem Meningitis Study Group. Antimicrob Agents Chemother 1995, 39:1140–1146.

    PubMed  CAS  Google Scholar 

  26. Schmutzhard E, Williams KJ, Vukmirovits G, et al.: A randomised comparison of meropenem with cefotaxime or ceftriaxone for the treatment of bacterial meningitis in adults. Meropenem Meningitis Study Group. J Antimicrob Chemother 1995, 36(suppl A):85–97.

    PubMed  CAS  Google Scholar 

  27. Spangler SK, Jacobs MR, Appelbaum PC: Comparative activity of the new fluoroquinolone Bay y3118 against 177 penicillinsusceptible and -resistant pneumococci. Eur J Clin Microbiol Infect Dis 1993, 12:965–967.

    Article  PubMed  CAS  Google Scholar 

  28. Pankuch GA, Jacobs MR, Appelbaum PC: Activity of CP 99,219 compared with DU 6859a, ciprofloxacin, ofloxacin, levofloxacin, lomefloxacin, tosufloxacin, sparfloxacin and grepafloxacin against penicillin-susceptible and -resistant pneumococci. J Antimicrob Chemother 1995, 35:230–232.

    Article  PubMed  CAS  Google Scholar 

  29. King A, Boothman C, Phillips I: The in-vitro activity of PD 127,391, a new quinolone. J Antimicrob Chemother 1988, 22:135–141.

    Article  PubMed  CAS  Google Scholar 

  30. Eliopoulos GM, Wennersten CB, Cole G, Moellering RC: In vitro activities of two glycylcyclines against gram-positive bacteria. Antimicrob Agents Chemother 1994, 38:534–535.

    PubMed  CAS  Google Scholar 

  31. Ednie LM, Visalli MA, Jacobs MR, Appelbaum PC: Comparative activity of clarithromycin, erythromycin and azithromycin against penicillin susceptible and penicillin resistant pneumococci. Antimicrob Agents Chemother 1997, 40:1950–1952.

    Google Scholar 

  32. Nelson CT, Mason EO, Kaplan SL: Activity of oral antibiotics in middle ear and sinus infections caused by penicillin-resistant Streptococcus pneumoniae: implications for treatment. Pediatr Infect Dis J 1994, 13:585–589.

    Article  PubMed  CAS  Google Scholar 

  33. Spangler SK, Jacobs MR, Appelbaum PC: Susceptibilities of penicillin-susceptible and -resistant strains of Streptococcus pneumoniae to RP 59500, vancomycin, erythromycin, PD 131628, sparfloxacin, temafloxacin, Win 57273, ofloxacin, and ciprofloxacin. Antimicrob Agents Chemother 1992, 36:856–859.

    PubMed  CAS  Google Scholar 

  34. Fremaux A, Sissia G, Cohen R, Geslin P: In-vitro antibacterial activity of RP 59500, a semisynthetic streptogramin, against Streptococcus pneumoniae. J Antimicrob Chemother 1992, 30(suppl A):19–23.

    PubMed  CAS  Google Scholar 

  35. Pankuch GA, Jacobs MR, Appelbaum PC: A study of the comparative anti-pneumococcal activity of penicillin G, RP59500, erythromycin, sparfloxacin, ciprofloxacin, and vancomycin by time-kill methodology. Antimicrob Agents Chemother 1994, 38:2065–2072.

    PubMed  CAS  Google Scholar 

  36. Pankuch GA, Jacobs MR, Appelbaum PC: Study of the comparative anti-pneumococcal activity of penicillin G, RP59500, erythromycin, sparfloxacin, ciprofloxacin, and vancomycin by using time-kill methodology. Antimicrob Agents Chemother 1994, 38:2065–2072.

    PubMed  CAS  Google Scholar 

  37. Ednie LM, Spangker SK, Jacobs MR, Appelbaum PC: Susceptibilities of 228 penicillin- and erythromycin-susceptible and - resistant pneumococci to RU 64004, a new ketolide, compared with susceptibilities to 16 other agents. Antimicrob Agents Chemother 1997, 41:1033–1036.

    PubMed  CAS  Google Scholar 

  38. Pankuch GA, Visalli MA, Jacobs MR, Appelbaum PC: Susceptibility of penicillin- and erythromycin-susceptible and -resistant pneumococci to HMR 3647 (RU 66647), a new ketolide, compared with susceptibilities to 17 other agents. Antimicrob Agents Chemother 1988, 42:624–630.

    Google Scholar 

  39. Appelbaum PC, Spangler SK, Crotty E, Jacobs MR: Susceptibility of penicillin-sensitive and-resistant strains of Streptococcus pneumoniae to new antimicrobial agents, including daptomycin, teicoplanin, cefpodoxime and quinolones. J Antimicrob Chemother 1989, 23:509–516.

    Article  PubMed  CAS  Google Scholar 

  40. Fasola E, Spangler SK, Ednie LM, et al.: Antipneumococcal activity of LY 333328, a new glycopeptide, compared with vancomycin, teicoplanin, ceftriaxone, rifampin and imipenem. Antimicrob Agents Chemother 1996, 40:2661–2663.

    PubMed  CAS  Google Scholar 

  41. Tauber MG, Hackbarth CJ, Scott KG, et al.: New cephalosporins, cefotaxime, cefpimizole, BMY 28142 and HR 810 in experimental pneumococcal meningitis in rabbits. Antimicrob Agents Chemother 1985, 27:340–342.

    PubMed  CAS  Google Scholar 

  42. Teele W, Pelton SI, Klein JO: Bacteriology of acute otitis media unresponsive to initial antimicrobial therapy. J Pediatr 1981, 98:537–539.

    Article  PubMed  CAS  Google Scholar 

  43. Beam TR: Vancomycin therapy of experimental pneumococcal meningitis caused by penicillin-sensitive and resistant strains. J Antimicrob Chemother 1981, 7:89–99.

    Article  PubMed  CAS  Google Scholar 

  44. McCracken GH, Sakata Y: Antimicrobial therapy of experimental meningitis caused by Streptococcus pneumoniae with different susceptibilities to penicillin. Antimicrob Agents Chemother 1985, 27:141–145.

    PubMed  CAS  Google Scholar 

  45. Schaad VB, McCracken GH, Loock CA, Thomas ML: Pharmacokinetics and bactericidal efficacy of moxalactam, cefotaxime, cefoperazone and Rocephin in experimental bacterial meningitis. J Infect Dis 1981, 143:156–163.

    PubMed  CAS  Google Scholar 

  46. Tauber MG, Doroshow CA, Hackbarth CJ, et al.: Antibacterial activity of b-lactam antibiotics in experimental meningitis due to Streptococcus pneumoniae. J Infect Dis 1984, 149:568–574.

    PubMed  CAS  Google Scholar 

  47. Tauber MG, Zak O, Scheld WM, et al.: The postantibiotic effect in the treatment of experimental meningitis caused by Streptococcus pneumoniae in rabbits. J Infect Dis 1984, 149:575–583.

    PubMed  CAS  Google Scholar 

  48. Appelbaum PC, Bhamjee A, Scragg JN, et al.: Streptococcus pneumoniae resistant to penicillin and chloramphenicol. Lancet 1977, 2:995–997.

    Article  PubMed  CAS  Google Scholar 

  49. Koornhof HJ, Jacobs MR, Ward JI, et al.: Therapy and control of antibiotic-resistant pneumococcal disease. In Microbiology. Edited by Schlessinger D. Washington, DC: American Society for Microbiology; 1979:286–289.

    Google Scholar 

  50. Ward J: Antibiotic-resistant Streptococcus pneumoniae: clinical and epidemiological aspects. Rev Infect Dis 1981, 3:254–265.

    PubMed  CAS  Google Scholar 

  51. Weingarten RD, Markiewicz Z, Gilbert DN: Meningitis due to penicillin-resistant Streptococcus pneumoniae in adults. Rev Infect Dis 1990, 12:118.

    PubMed  CAS  Google Scholar 

  52. Jackson MA, Shelton S, Nelson JD, McCracken HG: Relatively penicillin-resistant pneumococcal infections in pediatric patients. Pediatr Infect Dis J 1984, 3:129–132.

    Article  CAS  Google Scholar 

  53. Viladrich PF, Gudiol F, Liñares J, et al.: Characteristics and antibiotic therapy of adult meningitis due to penicillin-resistant pneumococci. Am J Med 1988, 84:839–846.

    Article  PubMed  CAS  Google Scholar 

  54. Buzon LM, Guerrero A, Romero J, et al.: Penicillin-resistant Streptococcus pneumoniae meningitis successfully treated with vancomycin. Eur J Clin Microbiol Infect Dis 1984, 3:442–443.

    Article  CAS  Google Scholar 

  55. Friedland IR, Klugman K: Recurrent penicillin-resistant pneumococcal meningitis after chloramphenicol therapy. Pediatr Infect Dis J 1991, 10:705–707.

    Article  PubMed  CAS  Google Scholar 

  56. Moreillon P, Markiewicz Z, Nachman S, Tomasz A: Two bactericidal targets for penicillin in pneumococci: autolysis-dependent and autolysis-independent killing mechanisms. Antimicrob Agents Chemother 1990, 34:33–39.

    PubMed  CAS  Google Scholar 

  57. Asensi F, Perez-Tamarit D, Otero MC, et al.: Impenem-cilastatin therapy in a child with meningitis caused by a multiply resistant pneumococcus. Pediatr Infect Dis J 1989, 8:895.

    PubMed  CAS  Google Scholar 

  58. Modai J, Vittecoq D, Decazes JM, Meulemans A: Penetration of imipenem and cilastatin into cerebrospinal fluid of patients with bacterial meningitis. J Antimicrob Chemother 1985, 16:751–755.

    Article  PubMed  CAS  Google Scholar 

  59. Calandra G, Lydick E, Carrigan J, et al.: Factors predisposing to seizures in seriously ill infected patients receiving antibiotics: experience with imipenem/cilastatin. Am J Med 1988, 84:911–918.

    Article  PubMed  CAS  Google Scholar 

  60. Berkowitz FE: Bacteremia in hospitalized black South African children. Am J Dis Child 1984, 138:551–556.

    PubMed  CAS  Google Scholar 

  61. Oppenheim B, Koornhof HJ, Austrian R: Antibiotic-resistant pneumococcal disease in children at Baragwanath Hospital, Johannesburg. Pediatr Infect Dis J 1986, 5:520–524.

    Article  CAS  Google Scholar 

  62. Feldman C, Kallenbach JM, Miller SD, et al.: Communityacquired pneumonia due to penicillin-resistant pneumococci. N Engl J Med 1986, 313:615–617.

    Article  Google Scholar 

  63. Pallares R, Gudiol F, Liñares J, et al.: Risk factors and response to antibiotic therapy in adults with bacteremic pneumonia caused by penicillin-resistant pneumococci. N Engl J Med 1987, 317:18–22.

    Article  PubMed  CAS  Google Scholar 

  64. Pallares R, Liñares J, Vadillo M, et al.:Resistance to penicillin and cephalosporin and mortality from severe pneumococcal pneumonia in Barcelona, Spain. N Engl J Med 1995, 333:474–480.

    Article  PubMed  CAS  Google Scholar 

  65. Reichler MR, Allphin AA, Breiman RF, et al.: The spread of multiply resistant Streptococcus pneumoniae at a day care center in Ohio. J Infect Dis 1992, 166:1346–1353.

    PubMed  CAS  Google Scholar 

  66. Friedman EM, McGill TJ, Healy GB: Central nervous system complications associated with acute otitis media in children. Laryngoscope 1990, 100:149.

    PubMed  CAS  Google Scholar 

  67. Carlin SA, Marchant CD, Shurin PA, et al.: Host factors and early therapeutic response in acute otitis media. J Pediatr 1991, 118:178–183.

    Article  PubMed  CAS  Google Scholar 

  68. Paradise JL: Antimicrobial drugs and surgical procedures in the prevention of otitis media. Pediatr Infect Dis J 1989, 8:S35-S37.

    Article  PubMed  CAS  Google Scholar 

  69. Friedland IR, McCracken GH: Management of infections caused by antibiotic-resistant Streptococcus pneumoniae. N Engl J Med 1994, 331:377–382.

    Article  PubMed  CAS  Google Scholar 

  70. Dowell SF, Butler JC, Giebink GS, et al.: and Drug Resistant Streptococcus pneumoniae Therapeutic Working Group.: Acute otitis media: management and surveillance in an era of pneumococcal resistance - a report from the Drug Resistant Streptococcus pneumoniae Therapeutic Working Group. Pediatr Infect Dis J 1999, 18:1–9. Concensus recommendations for the management of acute otitis media and for surveillance of drug-resistant S. pneumoniae.

    Article  PubMed  CAS  Google Scholar 

  71. Roger G, Carles P, Pagnon B, et al.: Management of acute otitis media caused by resistant pneumococci in infants. Pediatr Infect Dis J 1998, 17:631–638.

    Article  PubMed  CAS  Google Scholar 

  72. Dagan R, Abramson O, Leibovitz E, et al.: Bacteriologic response to oral cephalosporins: are established susceptibility breakpoints appropriate in the case of acute otitis media? J Infect Dis 1997, 176:1253–1259. Correlation of antimicrobial susceptibility and bacteriologic outcome in acute otitis media.

    Article  PubMed  CAS  Google Scholar 

  73. Dagan R, Abramson O, Leibovitz E, et al.: Impaired bacteriologic response to oral cephalosporins in acute otitis media caused by pneumococci with intermediate resistance to penicillin. Pediatr Infect Dis J 1996, 15:980–985.

    Article  PubMed  CAS  Google Scholar 

  74. Dagan R, Piglansky L, Fliss DM, et al.: Bacteriologic response in acute otitis media: comparison between azithromycin, cefaclor, and amoxicillin [bdabstract]. In Abstracts of Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC: American Society for Microbiology; 1997:K-103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, M.R., Appelbaum, P.C. Streptococcus pneumoniae: Activity of newer agents against penicillin-resistant strains. Curr Infect Dis Rep 1, 13–21 (1999). https://doi.org/10.1007/s11908-999-0004-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-999-0004-8

Keywords

Navigation