Skip to main content


Log in

New Vaccines on the Immediate Horizon for Travelers: Chikungunya and Dengue Vaccines

  • Tropical, Travel and Emerging Infections (LH Chen and F Norman, Section Editors)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript


Purpose of Review

Both chikungunya and dengue virus infections are frequent in international travelers to endemic areas.

Recent Findings

More than 11 chikungunya vaccines are in development, with one having completed phase 3 trials using a single dose, based on immune correlates as endpoint. Two live attenuated dengue vaccines are now licensed for use in travelers. Dengvaxia can only be used following pre-vaccination screening for serostatus, while Qdenga is licensed without the need for pre-vaccination screening, as the vaccine performance is less determined by serostatus. However, also for Qdenga, the efficacy is higher in seropositive persons against all four serotypes, while in seronegative persons, Qdenga only protects against serotypes 1 and 2.


Use of vaccines to protect against chikungunya and dengue is a high priority in the travel medicine context. Development of a chikungunya vaccine is scientifically less challenging compared to dengue vaccines. However, the risk of dengue is consistently much higher in travelers over the past decades, while risk assessment is more challenging for chikungunya given the sporadicity and unpredictability of chikungunya outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


Papers of particular interest, published recently, have been highlighted as: •  Of importance ••  Of major importance

  1. •• Yang X, Quam MBM, Zhang T, Sang S. Global burden for dengue and the evolving pattern in the past 30 years. J Travel Med. 2021;28(8). Best overview on the epidemiology of dengue in the past and present with projections for the future.

  2. Javelle E, Gautret P, Simon F. Chikungunya, the emerging migratory rheumatism. Lancet Infect Dis. 2015;15(5):509–10.

    Article  PubMed  Google Scholar 

  3. Lin Y, Fang K, Zheng Y, Wang HL, Wu J. Global burden and trends of neglected tropical diseases from 1990 to 2019. J Travel Med. 2022;29(3).

  4. Fischer M, Staples JE, Arboviral Diseases Branch NCfE, Zoonotic Infectious Diseases CDC. Notes from the field: chikungunya virus spreads in the Americas - Caribbean and South America, 2013–2014. MMWR Morb Mortal Wkly Rep. 2014;63(22):500–1.

  5. Barzon L, Gobbi F, Capelli G, Montarsi F, Martini S, Riccetti S, et al. Autochthonous dengue outbreak in Italy 2020: clinical, virological and entomological findings. J Travel Med. 2021;28(8).

  6. •• Bellone R, Lechat P, Mousson L, Gilbart V, Piorkowski G, Bohers C, et al. Climate change and vector-borne diseases: a multi-omics approach of temperature-induced changes in the mosquito. J Travel Med. 2023. In-depth data on how global warming may impact vectorial capacity and enable the mosquitoes to survive in temperate climates.

  7. Wilder-Smith A, Lindsay SW, Scott TW, Ooi EE, Gubler DJ, Das P. The Lancet Commission on dengue and other Aedes-transmitted viral diseases. Lancet. 2020;395(10241):1890–1.

    Article  PubMed  Google Scholar 

  8. Wilder-Smith A, Gubler DJ. Geographic expansion of dengue: the impact of international travel. Med Clin North Am. 2008;92(6):1377–90, x.

  9. Nunes MR, Palacios G, Faria NR, Sousa EC Jr, Pantoja JA, Rodrigues SG, et al. Air travel is associated with intracontinental spread of dengue virus serotypes 1–3 in Brazil. PLoS Negl Trop Dis. 2014;8(4):e2769.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nasserie T, Brent SE, Tuite AR, Moineddin R, Yong JHE, Miniota J, et al. Association between air travel and importation of chikungunya into the USA. J Travel Med. 2019;26(5).

  11. Hamer DH, Chen LH. Chikungunya: establishing a new home in the Western hemisphere. Ann Intern Med. 2014;161(11):827–8.

    Article  PubMed  Google Scholar 

  12. Rezza G. Chikungunya is back in Italy: 2007–2017. J Travel Med. 2018;25(1).

  13. Wilder-Smith A. The expanding geographic range of dengue in Australia. Med J Aust. 2021;215(4):171–2.

    Article  PubMed  Google Scholar 

  14. • Osman S, Preet R. Dengue, chikungunya and Zika in GeoSentinel surveillance of international travellers: a literature review from 1995 to 2020. J Travel Med. 2020;27(8). Sets dengue in comparison with other vector borne diseases in ill returning travelers.

  15. European Centre for Disease Prevention and Control (ECDC). Autochthonous transmission of dengue virus in mainland EU/EEA-pSEADA.

  16. Zeller H, Van Bortel W, Sudre B. Chikungunya: Its history in Africa and Asia and its spread to new regions in 2013–2014. J Infect Dis. 2016;214(suppl 5):S436–40.

    Article  PubMed  Google Scholar 

  17. Pan American Health Organization 2023, With rising cases edCsitAhwpoen---r-c-e-d-c.

  18. Vairo F, Haider N, Kock R, Ntoumi F, Ippolito G, Zumla A. Chikungunya: epidemiology, pathogenesis, clinical features, management, and prevention. Infect Dis Clin North Am. 2019;33(4):1003–25.

    Article  PubMed  Google Scholar 

  19. Langsjoen RM, Haller SL, Roy CJ, Vinet-Oliphant H, Bergren NA, Erasmus JH, et al. Chikungunya virus strains show lineage-specific variations in virulence and cross-protective ability in murine and nonhuman primate models. mBio. 2018;9(2).

  20. Casais PM, Akrami K, Cerqueira-Silva T, Moraes LP, Rigaud VN, Neto ES, et al. Oral lesions are frequent in patients with chikungunya infection. J Travel Med. 2020;27(4).

  21. Lang PO, Loulergue P, Aspinall R. Chikungunya Virus infection: why should U.S. geriatricians be aware of it? J Am Geriatr Soc. 2017;65(11):2529–34.

  22. Perti T, Lucero-Obusan CA, Schirmer PL, Winters MA, Holodniy M. Chikungunya fever cases identified in the Veterans Health Administration System, 2014. PLoS Negl Trop Dis. 2016;10(5):e0004630.

    Article  PubMed  PubMed Central  Google Scholar 

  23. de Almeida Barreto FK, Montenegro RM, Fernandes VO, Oliveira R, de Araújo Batista LA, Hussain A, et al. Chikungunya and diabetes, what do we know? Diabetol Metab Syndr. 2018;10(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Caglioti C, Lalle E, Castilletti C, Carletti F, Capobianchi MR, Bordi L. Chikungunya virus infection: an overview. New Microbiol. 2013;36(3):211–27.

    PubMed  Google Scholar 

  25. Gérardin P, Barau G, Michault A, Bintner M, Randrianaivo H, Choker G, et al. Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Réunion. PLoS Med. 2008;5(3):e60.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Calderwood C, Bhagani S, Cropley I, Papineni P. Severe chikungunya requiring intensive care in two travellers returning to the UK. J Travel Med. 2019;26(5).

  27. Ahamed SF, Rosario V, Britto C, Dias M, Nayak K, Chandele A, et al. Emergence of new genotypes and lineages of dengue viruses during the 2012–15 epidemics in southern India. Int J Infect Dis. 2019;84S:S34–43.

    Article  PubMed  Google Scholar 

  28. Ernst T, McCarthy S, Chidlow G, Luang-Suarkia D, Holmes EC, Smith DW, et al. Emergence of a new lineage of dengue virus type 2 identified in travelers entering Western Australia from Indonesia, 2010–2012. PLoS Negl Trop Dis. 2015;9(1): e0003442.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Andrade EH, Figueiredo LB, Vilela AP, Rosa JC, Oliveira JG, Zibaoui HM, et al. Spatial-temporal co-circulation of dengue virus 1, 2, 3, and 4 associated with coinfection cases in a hyperendemic area of Brazil: a 4-week survey. Am J Trop Med Hyg. 2016;94(5):1080–4.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. 2016.

  31. L’Azou M, Moureau A, Sarti E, Nealon J, Zambrano B, Wartel TA, et al. Symptomatic dengue in children in 10 Asian and Latin American countries. N Engl J Med. 2016;374(12):1155–66.

    Article  PubMed  CAS  Google Scholar 

  32. Wilder-Smith A. Dengue during the COVID-19 pandemic. J Travel Med. 2021;28(8).

  33. Lim JT, Dickens BL, Ong J, Aik J, Lee VJ, Cook AR, et al. Decreased dengue transmission in migrant worker populations in Singapore attributable to SARS-CoV-2 quarantine measures. J Travel Med. 2021;28(2).

  34. Wilder-Smith A, Ooi EE, Horstick O, Wills B. Dengue Lancet. 2019;393(10169):350–63.

    Article  PubMed  Google Scholar 

  35. Sangkaew S, Ming D, Boonyasiri A, Honeyford K, Kalayanarooj S, Yacoub S, et al. Risk predictors of progression to severe disease during the febrile phase of dengue: a systematic review and meta-analysis. Lancet Infect Dis. 2021;21(7):1014–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Vouga M, Chiu YC, Pomar L, de Meyer SV, Masmejan S, Genton B, et al. Dengue, Zika and chikungunya during pregnancy: pre- and post-travel advice and clinical management. J Travel Med. 2019;26(8).

  37. Paixão ES, Costa M, Teixeira MG, Harron K, de Almeida MF, Barreto ML, et al. Symptomatic dengue infection during pregnancy and the risk of stillbirth in Brazil, 2006–12: a matched case-control study. Lancet Infect Dis. 2017;17(9):957–64.

    Article  PubMed  PubMed Central  Google Scholar 

  38. •• Simon F, Caumes E, Jelinek T, Lopez-Velez R, Steffen R, Chen LH. Chikungunya: risks for travellers. J Travel Med. 2023;30(2). Most comprehensive analysis of chikungungya risk in travellers.

  39. • Halstead S, Wilder-Smith A. Severe dengue in travellers: pathogenesis, risk and clinical management. J Travel Med. 2019;26(7). Comprehensive synthesis on the risk of dengue in travelers.

  40. Hamer DH, Rizwan A, Freedman DO, Kozarsky P, Libman M. GeoSentinel: past, present and future dagger. J Travel Med. 2020;27(8).

  41. Angelo KM. Twenty-five years: GeoSentinel's impact on travel-related surveillance and its vision for the future. J Travel Med. 2020;27(7).

  42. Wilder-Smith A, Boggild AK. Sentinel surveillance in travel medicine: 20 years of GeoSentinel publications (1999–2018). J Travel Med. 2018;25(1).

  43. Norman FF, Henríquez-Camacho C, Díaz-Menendez M, Chamorro S, Pou D, Molina I, et al. Imported arbovirus infections in Spain, 2009–2018. Emerg Infect Dis. 2020;26(4):658–66.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Aoki Y, Terakawa I. Disease profiles created by the experience of imported febrile cases in resource-limited settings. J Travel Med. 2021;28(5).

  45. Cobuccio LG, Laurent M, Gardiol C, Wampfler R, Poppert S, Senn N, et al. Should we treat Blastocystis sp.? A double-blind placebo-controlled randomized pilot trial. J Travel Med. 2023;30(1).

  46. Camprubi-Ferrer D, Cobuccio L, Van Den Broucke S, Genton B, Bottieau E, d'Acremont V, et al. Causes of fever in returning travelers: a European multicenter prospective cohort study. J Travel Med. 2022;29(2).

  47. Leder K, Tong S, Weld L, Kain KC, Wilder-Smith A, von Sonnenburg F, et al. Illness in travelers visiting friends and relatives: a review of the GeoSentinel Surveillance Network. Clin Infect Dis. 2006;43(9):1185–93.

    Article  PubMed  Google Scholar 

  48. Huits R, Schwartz E. Fatal outcomes of imported dengue fever in adult travelers from non-endemic areas are associated with primary infections. J Travel Med. 2021;28(5).

  49. Ujiie M. Deaths due to dengue in Japanese travellers. J Travel Med. 2021;28(5).

  50. World Health Organization. Geneva, Switzerland. 2022.,will%20double%20(2.1%20billion) accessed online on June 26th 2023.

  51. Chong B, Kong G, Shankar K, Chew HSJ, Lin C, Goh R, et al. The global syndemic of metabolic diseases in the young adult population: a consortium of trends and projections from the Global Burden of Disease 2000–2019. Metabolism. 2023;141: 155402.

    Article  PubMed  CAS  Google Scholar 

  52. Greenaway C, Castelli F. Infectious diseases at different stages of migration: an expert review. J Travel Med. 2019;26(2).

  53. Agyemang C, van den Born B-J. Cardiovascular health and disease in migrant populations: a call to action. Nat Rev Cardiol. 2022;19(1):1–2.

    Article  PubMed  Google Scholar 

  54. Hawman DW, Stoermer KA, Montgomery SA, Pal P, Oko L, Diamond MS, et al. Chronic joint disease caused by persistent chikungunya virus infection is controlled by the adaptive immune response. J Virol. 2013;87(24):13878–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. •• Yoon IK, Srikiatkhachorn A, Alera MT, Fernandez S, Cummings DAT, Salje H. Pre-existing chikungunya virus neutralizing antibodies correlate with risk of symptomatic infection and subclinical seroconversion in a Philippine cohort. Int J Infect Dis. 2020;95:167–73. New insights on risk of symptomatic infection.

    Article  PubMed  CAS  Google Scholar 

  56. Folegatti PM, Harrison K, Preciado-Llanes L, Lopez FR, Bittaye M, Kim YC, et al. A single dose of ChAdOx1 Chik vaccine induces neutralizing antibodies against four chikungunya virus lineages in a phase 1 clinical trial. Nat Commun. 2021;12(1):4636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. •• Shaw CA, August A, Bart S, Booth PJ, Knightly C, Brasel T, et al. A phase 1, randomized, placebo-controlled, dose-ranging study to evaluate the safety and immunogenicity of an mRNA-based chikungunya virus vaccine in healthy adults. Vaccine. 2023. Pivotal trial.

  58. Clinical

  59. •• Reisinger EC, Tschismarov R, Beubler E, Wiedermann U, Firbas C, Loebermann M, et al. Immunogenicity, safety, and tolerability of the measles-vectored chikungunya virus vaccine MV-CHIK: a double-blind, randomised, placebo-controlled and active-controlled phase 2 trial. Lancet. 2019;392(10165):2718–27. Pivotal trial.

    Article  PubMed  Google Scholar 

  60. Goo L, Dowd KA, Lin TY, Mascola JR, Graham BS, Ledgerwood JE, et al. A virus-like particle vaccine elicits broad neutralizing antibody responses in humans to all chikungunya virus genotypes. J Infect Dis. 2016;214(10):1487–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. •• Chen GL, Coates EE, Plummer SH, Carter CA, Berkowitz N, Conan-Cibotti M, et al. Effect of a chikungunya virus-like particle vaccine on safety and tolerability outcomes: a randomized clinical trial. JAMA. 2020;323(14):1369–77. Pivotal trial.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. •• Bennett SR, McCarty JM, Ramanathan R, Mendy J, Richardson JS, Smith J, et al. Safety and immunogenicity of PXVX0317, an aluminium hydroxide-adjuvanted chikungunya virus-like particle vaccine: a randomised, double-blind, parallel-group, phase 2 trial. Lancet Infect Dis. 2022;22(9):1343–55. Pivotal trial.

    Article  PubMed  CAS  Google Scholar 

  63. •• Akahata W, Yang ZY, Andersen H, Sun S, Holdaway HA, Kong WP, et al. A virus-like particle vaccine for epidemic chikungunya virus protects nonhuman primates against infection. Nat Med. 2010;16(3):334–8. Pivotal trial.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. VLA1553 at a Glance Id, New York (2022): accessed online on June 7, 2023.

  65. Valneva successfully completes lot-to-lot consistency trial for its single-shot chikungunya vaccine candidate hvcp-rv-s-c-l-t-l-c-t-f-i-.

  66. accessed online on May 25 2023 VRP-MAPDfS-SCVCV.

  67. Jaffe E, Goldfarb IT, Lyerly AD. The costs of contradictory messages about live vaccines in pregnancy. Am J Public Health. 2021;111(3):498–503.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lum FM, Couderc T, Chia BS, Ong RY, Her Z, Chow A, et al. Antibody-mediated enhancement aggravates chikungunya virus infection and disease severity. Sci Rep. 2018;8(1):1860.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wilder-Smith A, Macary P. Dengue: challenges for policy makers and vaccine developers. Curr Infect Dis Rep. 2014;16(5):404.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Katzelnick LC, Harris E, Participants in the Summit on Dengue Immune Correlates of P. Immune correlates of protection for dengue: state of the art and research agenda. Vaccine. 2017;35(36):4659–69.

  71. Hadinegoro SR, Arredondo-Garcia JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, et al. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med. 2015.

  72. •• Wilder-Smith A, Flasche S, Smith PG. Vaccine-attributable severe dengue in the Philippines. Lancet. 2019;394(10215):2151–2. Calculates breakthrough versus enhanced disease.

    Article  PubMed  Google Scholar 

  73. Flasche S, Wilder-Smith A, Hombach J, Smith PG. Estimating the proportion of vaccine-induced hospitalized dengue cases among Dengvaxia vaccinees in the Philippines. Wellcome Open Res. 2019;4:165.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wilder-Smith A, Hombach J, Ferguson N, Selgelid M, O’Brien K, Vannice K, et al. Deliberations of the Strategic Advisory Group of Experts on Immunization on the use of CYD-TDV dengue vaccine. Lancet Infect Dis. 2019;19(1):e31–8.

    Article  PubMed  CAS  Google Scholar 

  75. Bonaparte M, Zheng L, Garg S, Guy B, Lustig Y, Schwartz E, et al. Evaluation of rapid diagnostic tests and conventional enzyme-linked immunosorbent assays to determine prior dengue infection. J Travel Med. 2019;26(8).

  76. Fongwen N, Delrieu I, Ham LH, Gubler DJ, Durbin A, Ooi EE, et al. Implementation strategies for the first licensed dengue vaccine: a meeting report. Vaccine. 2021;39(34):4759–65.

    Article  PubMed  CAS  Google Scholar 

  77. Wilder-Smith A. Serostatus-dependent performance of the first licensed dengue vaccine: implications for travellers. J Travel Med. 2018;25(1).

  78. Osorio JE, Wallace D, Stinchcomb DT. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone. Expert Rev Vaccines. 2016;15(4):497–508.

    Article  PubMed  CAS  Google Scholar 

  79. White LJ, Young EF, Stoops MJ, Henein SR, Adams EC, Baric RS, et al. Defining levels of dengue virus serotype-specific neutralizing antibodies induced by a live attenuated tetravalent dengue vaccine (TAK-003). PLoS Negl Trop Dis. 2021;15(3):e0009258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. •• Rivera L, Biswal S, Saez-Llorens X, Reynales H, Lopez-Medina E, Borja-Tabora C, et al. Three-year efficacy and safety of Takeda’s dengue vaccine candidate (TAK-003). Clin Infect Dis. 2022;75(1):107–17. Pivotal trial results.

    Article  PubMed  Google Scholar 

  81. Tu HA, Nivarthi UK, Graham NR, Eisenhauer P, Delacruz MJ, Pierce KK, et al. Stimulation of B cell immunity in flavivirus-naive individuals by the tetravalent live attenuated dengue vaccine TV003. Cell Rep Med. 2020;1(9): 100155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Pintado Silva J, Fenutria R, Bernal-Rubio D, Sanchez-Martin I, Hunziker A, Chebishev E, et al. The dengue virus 4 component of NIAID’s tetravalent TV003 vaccine drives its innate immune signature. Exp Biol Med (Maywood). 2022;247(24):2201–12.

    Article  PubMed  CAS  Google Scholar 

  83. •• Durbin AP. Historical discourse on the development of the live attenuated tetravalent dengue vaccine candidate TV003/TV005. Curr Opin Virol. 2020;43:79–87. Best overview on TV003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Nivarthi UK, Swanstrom J, Delacruz MJ, Patel B, Durbin AP, Whitehead SS, et al. A tetravalent live attenuated dengue virus vaccine stimulates balanced immunity to multiple serotypes in humans. Nat Commun. 2021;12(1):1102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. [press release].

  86. Steffen R, Chen LH, Leggat PA. Travel vaccines-priorities determined by incidence and impact. J Travel Med. 2023.

  87. McGuinness SL, Eades O, Seale H, Cheng AC, Leder K. Pre-travel vaccine information needs, attitudes, drivers of uptake and the role for decision aids in travel medicine. J Travel Med. 2023;30(4).

  88. Kain D, Findlater A, Lightfoot D, Maxim T, Kraemer MUG, Brady OJ, et al. Factors affecting pre-travel health seeking behaviour and adherence to pre-travel health advice: a systematic review. J Travel Med. 2019;26(6).

Download references

Author information

Authors and Affiliations



Both authors contributed equally to this manuscript. SM focused more on chikungunya vaccines, whilst AWS focused on dengue vaccines

Corresponding author

Correspondence to Annelies Wilder-Smith.

Ethics declarations

Conflict of Interest

AWS is staff at the World Health Organization (WHO) since May 2023, and SM serves as WHO consultant. The invitation for this manuscript occurred before both joined WHO. Opinions stated here are those of the authors and may not necessarily reflect those of WHO.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menon, S., Wilder-Smith, A. New Vaccines on the Immediate Horizon for Travelers: Chikungunya and Dengue Vaccines. Curr Infect Dis Rep 25, 211–224 (2023).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: