Phage Therapy: Primer and Role in the Treatment of MDROs

Abstract

Purpose of Review

Given increasing prevalence of multi-drug resistant organisms (MDROs), there is a significant interest in exploring non-antibiotic therapeutic options. We discuss basics of bacteriophage therapy (BT) and its role in the treatment of infections due to MDRO.

Recent Findings

BT employs lytic viruses to infect and lyse bacterial pathogens and is an emerging treatment strategy for treatment of infections caused by MDROs. We summarize key characteristics that make BT an attractive option against MDROs, discuss recent cases in which BT was successfully used to treat antibiotic recalcitrant infections, and discuss challenges that need to be overcome to make BT a viable clinical strategy.

Summary

BT is a viable therapeutic option needing further research in order to bring it to clinical practice.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    CDC. Biggest threats and data: 2019 AR Threats Report 2020, March 13 [Available from: https://www.cdc.gov/drugresistance/biggest-threats.html.

  2. 2.

    Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant <span class=“named-content genus-species” id=“named-content-1”>Acinetobacter baumannii</span> infection. Antimicrob Agents Chemother. 2017;61(10):e00954–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Bragg RR, Meyburgh CM, Lee J-Y, Coetzee M, editors. Potential treatment options in a post-antibiotic era2018; Singapore: Springer Singapore.

  4. 4.

    Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, et al. Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis. 2016;16(2):239–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE Jr. Trends in antimicrobial drug development: implications for the future. Clin Infect Dis. 2004;38(9):1279–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Hua L, Hilliard JJ, Shi Y, Tkaczyk C, Cheng LI, Yu X, et al. Assessment of an anti-alpha-toxin monoclonal antibody for prevention and treatment of Staphylococcus aureus-induced pneumonia. Antimicrob Agents Chemother. 2014;58(2):1108–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    DiGiandomenico A, Keller AE, Gao C, Rainey GJ, Warrener P, Camara MM, et al. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci Transl Med. 2014;6(262):262ra155.

  8. 8.

    Palliyil S, Downham C, Broadbent I, Charlton K, Porter AJ. High-sensitivity monoclonal antibodies specific for homoserine lactones protect mice from lethal Pseudomonas aeruginosa infections. Appl Environ Microbiol. 2014;80(2):462–9.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Secher T, Fas S, Fauconnier L, Mathieu M, Rutschi O, Ryffel B, et al. The anti-Pseudomonas aeruginosa antibody Panobacumab is efficacious on acute pneumonia in neutropenic mice and has additive effects with meropenem. PLoS One. 2013;8(9):e73396.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Kotzampassi K, Giamarellos-Bourboulis EJ. Probiotics for infectious diseases: more drugs, less dietary supplementation. Int J Antimicrob Agents. 2012;40(4):288–96.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Stavrou G, Giamarellos-Bourboulis EJ, Kotzampassi K. The role of probiotics in the prevention of severe infections following abdominal surgery. Int J Antimicrob Agents. 2015;46(Suppl 1):S2–4.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Goldenberg JZ, Mertz D, Johnston BC. Probiotics to prevent Clostridium difficile infection in patients receiving antibiotics. Jama. 2018;320(5):499–500.

    PubMed  Article  Google Scholar 

  13. 13.

    Goldenberg JZ, Yap C, Lytvyn L, Lo CK, Beardsley J, Mertz D, et al. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev. 2017;12(12):Cd006095.

  14. 14.

    Bo L, Li J, Tao T, Bai Y, Ye X, Hotchkiss RS, et al. Probiotics for preventing ventilator-associated pneumonia. Cochrane Database Syst Rev. 2014;10(10):Cd009066.

  15. 15.

    Hancock RE, Nijnik A, Philpott DJ. Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol. 2012;10(4):243–54.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Aslam S, Courtwright AM, Koval C, Lehman SM, Morales S, Furr CL, et al. Early clinical experience of bacteriophage therapy in 3 lung transplant recipients. Am J Transplant. 2019;19(9):2631–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Wittebole X, De Roock S, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence. 2014;5(1):226–35.

    PubMed  Article  Google Scholar 

  18. 18.

    Morrisette T, Kebriaei R, Lev KL, Morales S, Rybak MJ. Bacteriophage therapeutics: a primer for clinicians on phage-antibiotic combinations. Pharmacotherapy. 2020;40(2):153–68.

    PubMed  Article  Google Scholar 

  19. 19.

    Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28(2):127–81.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Aslam S, Schooley RT. What’s old is new again: bacteriophage therapy in the 21st century. Antimicrob Agents Chemother. 2019;64(1).

  21. 21.

    Sabouri Ghannad M, Mohammadi A. Bacteriophage: time to re-evaluate the potential of phage therapy as a promising agent to control multidrug-resistant bacteria. Iran J Basic Med Sci. 2012;15(2):693–701.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kutter E, Kuhl S, Alavidze Z, Blasdel B. Phage therapy: bacteriophages as natural, self-limiting antibiotics. Textbook of Natural Medicine. 2005;112:945–56.

    Google Scholar 

  23. 23.

    Cisek AA, Dabrowska I, Gregorczyk KP, Wyzewski Z. Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr Microbiol. 2017;74(2):277–83.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    McCallin S, Sacher JC, Zheng J, Chan BK. Current state of compassionate phage therapy. Viruses. 2019;11(4).

  25. 25.

    Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol. 2009;501:69–76.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Henry M, Biswas B, Vincent L, Mokashi V, Schuch R, Bishop-Lilly KA, et al. Development of a high throughput assay for indirectly measuring phage growth using the OmniLog(TM) system. Bacteriophage. 2012;2(3):159–67.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Ly-Chatain MH. The factors affecting effectiveness of treatment in phages therapy. Front Microbiol. 2014;5:51.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Seed KD. Battling phages: how bacteria defend against viral attack. PLoS Pathog. 2015;11(6):e1004847.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8(5):317–27.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Huang LH, Farnet CM, Ehrlich KC, Ehrlich M. Digestion of highly modified bacteriophage DNA by restriction endonucleases. Nucleic Acids Res. 1982;10(5):1579–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Lu MJ, Stierhof YD, Henning U. Location and unusual membrane topology of the immunity protein of the Escherichia coli phage T4. J Virol. 1993;67(8):4905–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013;8(6):769–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Lehman SM, Mearns G, Rankin D, Cole RA, Smrekar F, Branston SD, et al. Design and preclinical development of a phage product for the treatment of antibiotic-resistant Staphylococcus aureus infections. Viruses. 2019;11(1):88.

    CAS  PubMed Central  Article  Google Scholar 

  34. 34.

    Oechslin F. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses. 2018;10(7).

  35. 35.

    Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Advances in applied microbiology. 70: Elsevier; 2010. p. 217–48.

  36. 36.

    Casey E, Van Sinderen D, Mahony J. In vitro characteristics of phages to guide ‘real life’phage therapy suitability. Viruses. 2018;10(4):163.

    PubMed Central  Article  CAS  Google Scholar 

  37. 37.

    Levin BR, Bull JJ. Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol. 2004;2(2):166–73.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Abedon S, Loc-Carrillo C. Pros and cons of phage therapy. Bacteriophage. 2011;1:111–4.

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Akanda ZZ, Taha M, Abdelbary H. Current review-the rise of bacteriophage as a unique therapeutic platform in treating peri-prosthetic joint infections. J Orthop Res. 2018;36(4):1051–60.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Law N, Logan C, Yung G, Furr CL, Lehman SM, Morales S, et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection. 2019;47(4):665–8.

    PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Fish R, Kutter E, Bryan D, Wheat G, Kuhl S. Resolving digital staphylococcal osteomyelitis using bacteriophage-a case report. Antibiotics (Basel). 2018;7(4).

  42. 42.

    Hoyle N, Zhvaniya P, Balarjishvili N, Bolkvadze D, Nadareishvili L, Nizharadze D, et al. Phage therapy against Achromobacter xylosoxidans lung infection in a patient with cystic fibrosis: a case report. Res Microbiol. 2018;169(9):540–2.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Kvachadze L, Balarjishvili N, Meskhi T, Tevdoradze E, Skhirtladze N, Pataridze T, et al. Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb Biotechnol. 2011;4(5):643–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Kuipers S, Ruth MM, Mientjes M, de Sévaux RGL, van Ingen J. A Dutch case report of successful treatment of chronic relapsing urinary tract infection with bacteriophages in a renal transplant patient. Antimicrob Agents Chemother. 2019;64(1):e01281–19.

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 2019;25(5):730–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Aslam S, Pretorius V, Lehman SM, Morales S, Schooley RT. Novel bacteriophage therapy for treatment of left ventricular assist device infection. J Heart Lung Transplant. 2019;38(4):475–6.

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Mulzer J, Trampuz A, Potapov EV. Treatment of chronic left ventricular assist device infection with local application of bacteriophages. Eur J Cardiothorac Surg. 2019.

  48. 48.

    Nir-Paz R, Gelman D, Khouri A, Sisson BM, Fackler J, Alkalay-Oren S, et al. Successful treatment of antibiotic-resistant, poly-microbial bone infection with bacteriophages and antibiotics combination. Clin Infect Dis. 2019;69(11):2015–8.

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Tkhilaishvili T, Winkler T, Muller M, Perka C, Trampuz A. Bacteriophages as adjuvant to antibiotics for the treatment of periprosthetic joint infection caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;64(1).

  50. 50.

    Cano EJ, Caflisch KM, Bollyky PL, Van Belleghem JD, Patel R, Fackler J, et al. Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: case report and in vitro characterization of anti-biofilm activity. Clin Infect Dis. 2020.

  51. 51.

    Gupta P, Singh HS, Shukla VK, Nath G, Bhartiya SK. Bacteriophage therapy of chronic nonhealing wound: clinical study. Int J Low Extrem Wounds. 2019;18(2):171–5.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA, Resch G, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019;19(1):35–45.

    PubMed  Article  Google Scholar 

  53. 53.

    Ooi ML, Drilling AJ, Morales S, Fong S, Moraitis S, Macias-Valle L, et al. Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus. JAMA Otolaryngol Head Neck Surg. 2019.

  54. 54.

    Bao J, Wu N, Zeng Y, Chen L, Li L, Yang L, et al. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae. Emerg Microbes Infect 2020;9(1):771–4. https://doi.org/10.1080/22221751.2020.1747950.

  55. 55.

    Petrovic Fabijan A, Lin RCY, Ho J, Maddocks S, Ben Zakour NL, Iredell JR. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol. 2020.

  56. 56.

    Rutter WC, Burgess DR, Burgess DS. Increasing incidence of multidrug resistance among cystic fibrosis respiratory bacterial isolates. Microb Drug Resist. 2017;23(1):51–5.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Trend S, Fonceca AM, Ditcham WG, Kicic A, Cf A. The potential of phage therapy in cystic fibrosis: essential human-bacterial-phage interactions and delivery considerations for use in Pseudomonas aeruginosa-infected airways. J Cyst Fibros. 2017;16(6):663–70.

    PubMed  Article  Google Scholar 

  58. 58.

    Saussereau E, Vachier I, Chiron R, Godbert B, Sermet I, Dufour N, et al. Effectiveness of bacteriophages in the sputum of cystic fibrosis patients. Clin Microbiol Infect. 2014;20(12):O983–90.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    James CE, Davies EV, Fothergill JL, Walshaw MJ, Beale CM, Brockhurst MA, et al. Lytic activity by temperate phages of Pseudomonas aeruginosa in long-term cystic fibrosis chronic lung infections. Isme j. 2015;9(6):1391–8.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Abedon ST. Phage therapy of pulmonary infections. Bacteriophage. 2015;5(1):e1020260.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Steinmann J, Hamprecht A, Vehreschild MJ, Cornely OA, Buchheidt D, Spiess B, et al. Emergence of azole-resistant invasive aspergillosis in HSCT recipients in Germany. J Antimicrob Chemother. 2015;70(5):1522–6.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Chou S. Approach to drug-resistant cytomegalovirus in transplant recipients. Curr Opin Infect Dis. 2015;28(4):293–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Bartoletti M, Giannella M, Tedeschi S, Viale P. Multidrug-resistant bacterial infections in solid organ transplant candidates and recipients. Infect Dis Clin N Am. 2018;32(3):551–80.

    Article  Google Scholar 

  64. 64.

    Seo SK, Lo K, Abbo LM. Current state of antimicrobial stewardship at solid organ and hematopoietic cell transplant centers in the United States. Infect Control Hosp Epidemiol. 2016;37(10):1195–200.

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Frobert E, Burrel S, Ducastelle-Lepretre S, Billaud G, Ader F, Casalegno JS, et al. Resistance of herpes simplex viruses to acyclovir: an update from a ten-year survey in France. Antivir Res. 2014;111:36–41.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Linares L, Cervera C, Cofán F, Ricart MJ, Esforzado N, Torregrosa V, et al. Epidemiology and outcomes of multiple antibiotic-resistant bacterial infection in renal transplantation. Transplant Proc. 2007;39(7):2222–4.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Alevizakos M, Nasioudis D, Mylonakis E. Urinary tract infections caused by ESBL-producing Enterobacteriaceae in renal transplant recipients: a systematic review and meta-analysis. Transpl Infect Dis. 2017;19(6).

  68. 68.

    Longworth SA, Daly JS. Management of infections due to nontuberculous mycobacteria in solid organ transplant recipients-guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transpl. 2019;33(9):e13588.

    Article  Google Scholar 

  69. 69.

    Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutateladze M, Gozlugol M. Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg Am. 2013;95(2):117–25.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saima Aslam.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Antimicrobial Development and Drug Resistance

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Law, N., Aslam, S. Phage Therapy: Primer and Role in the Treatment of MDROs. Curr Infect Dis Rep 22, 31 (2020). https://doi.org/10.1007/s11908-020-00742-x

Download citation

Keywords

  • Bacteriophage
  • Phage therapy
  • Multidrug-resistant organisms
  • MDRO