Skip to main content

Advertisement

Log in

Novel Strategies for the Management of Vancomycin-Resistant Enterococcal Infections

  • Antimicrobial Development and Drug Resistance (K Claeys and A Vega, Section Editors)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Vancomycin-resistant enterococci (VRE) are important nosocomial pathogens that commonly affect critically ill patients. VRE have a remarkable genetic plasticity allowing them to acquire genes associated with antimicrobial resistance. Therefore, the treatment of deep-seated infections due to VRE has become a challenge for the clinician. The purpose of this review is to assess the current and future strategies for the management of recalcitrant deep-seated VRE infections and efforts for infection control in the hospital setting.

Recent Findings

Preventing colonization and decolonization of multidrug-resistant bacteria are becoming the most promising novel strategies to control and eradicate VRE from the hospital environment. Fecal microbiota transplantation (FMT) has shown remarkable results on treating colonization and infection due to Clostridiodes difficille and VRE, as well as to recover the integrity of the gut microbiota under antibiotic pressure. Initial reports have shown the efficacy of FMT on reestablishing patient microbiota diversity in the gut and reducing the dominance of VRE in the gastrointestinal tract. In addition, the use of bacteriophages may be a promising strategy in eradicating VRE from the gut of patients. Until these strategies become widely available in the hospital setting, the implementation of infection control measures and stewardship programs are paramount for the control of this pathogen and each program should provide recommendations for the proper use of antibiotics and develop strategies that help to detect populations at risk of VRE colonization, prevent and control nosocomial transmission of VRE, and develop educational programs for all healthcare workers addressing the epidemiology of VRE and the potential impact of these pathogens on the cost and outcomes of patients. In terms of antibiotic strategies, daptomycin has become the standard of care for the management of deep-seated infections due to VRE. However, recent evidence indicates that the efficacy of this antibiotic is limited, and higher (10–12 mg/kg) doses and/or combination with β-lactams is needed for therapeutic success. Clinical data to support the best use of daptomycin against VRE are urgently needed.

Summary

This review provides an overview of recent developments regarding the prevention, treatment, control, and eradication of VRE in the hospital setting. We aim to provide an update of the most recent therapeutic strategies to treat deep-seated infections due to VRE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Greenhalgh K, Meyer KM, Aagaard KM, Wilmes P. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ Microbiol. 2016;18:2103–16.

    Article  Google Scholar 

  2. Donskey CJ, Chowdhry TK, Hecker MT, Hoyen CK, Hanrahan JA, Hujer AM, et al. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N Engl J Med. 2000;343:1925–32.

    Article  CAS  Google Scholar 

  3. Paterson DL, Muto CA, Ndirangu M, Linden PK, Potoski BA, Capitano B, et al. Acquisition of rectal colonization by vancomycin-resistant Enterococcus among intensive care unit patients treated with piperacillin-tazobactam versus those receiving cefepime-containing antibiotic regimens. Antimicrob Agents Chemother. 2008;52:465–9.

    Article  CAS  Google Scholar 

  4. Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest. 2010;120:4332–41.

    Article  CAS  Google Scholar 

  5. Zhang X, Top J, de Been M, Bierschenk D, Rogers M, Leendertse M, et al. Identification of a genetic determinant in clinical Enterococcus faecium strains that contributes to intestinal colonization during antibiotic treatment. J Infect Dis. 2013;207:1780–6.

    Article  CAS  Google Scholar 

  6. Battipaglia G, Malard F, Rubio MT, Ruggeri A, Mamez AC, Brissot E, et al. Fecal microbiota transplantation before or after allogeneic hematopoietic transplantation in patients with hematological malignancies carrying multidrug-resistance bacteria. Haematologica. 2019. https://doi.org/10.3324/haematol.2018.198549.

  7. Seekatz AM, Aas J, Gessert CE, Rubin TA, Saman DM, Bakken JS, et al. Recovery of the gut microbiome following fecal microbiota transplantation. MBio. 2014;5:e00893–14.

    Article  Google Scholar 

  8. Hui W, Li T, Liu W, Zhou C, Gao F. Fecal microbiota transplantation for treatment of recurrent C. difficile infection: an updated randomized controlled trial meta-analysis. PLoS One. 2019;14:e0210016.

    Article  CAS  Google Scholar 

  9. Stripling J, Kumar R, Baddley JW, Nellore A, Dixon P, Howard D, et al. Loss of vancomycin-resistant Enterococcus fecal dominance in an organ transplant patient with Clostridium difficile colitis after fecal microbiota transplant. Open Forum Infect Dis. 2015;2:ofv078.

    Article  Google Scholar 

  10. Dubberke ER, Mullane KM, Gerding DN, Lee CH, Louie TJ, Guthertz H, et al. Clearance of vancomycin-resistant enterococcus concomitant with administration of a microbiota-based drug targeted at recurrent Clostridium difficile infection. Open Forum Infect Dis. 2016;3:ofw133.

    Article  Google Scholar 

  11. Biswas B, Adhya S, Washart P, Paul B, Trostel AN, Powell B, et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun. 2002;70:204–10.

    Article  CAS  Google Scholar 

  12. Rahmat Ullah S, Andleeb S, Raza T, Jamal M, Mehmood K. Effectiveness of a lytic phage SRG1 against vancomycin-resistant Enterococcus faecalis in compost and soil. Biomed Res Int. 2017;2017:9351017.

    Article  Google Scholar 

  13. Otawa K, Hirakata Y, Kaku M, Nakai Y. Bacteriophage control of vancomycin-resistant enterococci in cattle compost. J Appl Microbiol. 2012;113:499–507.

    Article  CAS  Google Scholar 

  14. Uchiyama J, Rashel M, Maeda Y, Takemura I, Sugihara S, Akechi K, et al. Isolation and characterization of a novel Enterococcus faecalis bacteriophage phiEF24C as a therapeutic candidate. FEMS Microbiol Lett. 2008;278:200–6.

    Article  CAS  Google Scholar 

  15. Haddad LE, Mark Stibich M, Chemaly RF. The successful recovery of bacteriophages with activity against vancomycin-resistant enterococci (VRE) from stool samples of hematopoietic cell transplant (HCT) recipients. Open Forum Infect Dis. 2017;4(Suppl 1):S288.

  16. Gelman D, Beyth S, Lerer V, Adler K, Poradosu-Cohen R, Coppenhagen-Glazer S, et al. Combined bacteriophages and antibiotics as an efficient therapy against VRE Enterococcus faecalis in a mouse model. Res Microbiol. 2018;169:531–9.

    Article  CAS  Google Scholar 

  17. Puchter L, Chaberny IF, Schwab F, Vonberg RP, Bange FC, Ebadi E. Economic burden of nosocomial infections caused by vancomycin-resistant enterococci. Antimicrob Resist Infect Control. 2018;7:1.

    Article  Google Scholar 

  18. Grundmann H, Hellriegel B. Mathematical modelling: a tool for hospital infection control. Lancet Infect Dis. 2006;6:39–45.

    Article  CAS  Google Scholar 

  19. Frakking FNJ, Bril WS, Sinnige JC, Klooster JEV, de Jong BAW, van Hannen EJ, et al. Recommendations for the successful control of a large outbreak of vancomycin-resistant Enterococcus faecium in a non-endemic hospital setting. J Hosp Infect. 2018;100:e216–25.

    Article  CAS  Google Scholar 

  20. Ozorowski T, Kawalec M, Zaleska M, Konopka L, Hryniewicz W. The effect of an antibiotic policy on the control of vancomycin-resistant enterococci outbreak and on the resistance patterns of bacteria isolated from the blood of patients in a hematology unit. Pol Arch Med Wewn. 2009;119:712–8.

    PubMed  Google Scholar 

  21. Papanicolaou GA, Ustun C, Young JH, Chen M, Kim S, Ahn KW, et al. Bloodstream infection (BSI) due to Vancomycin-Resistant Enterococcus (VRE) is associated with increased mortality after hematopoietic cell transplantation for acute leukemia and myelodysplastic syndrome: a multicenter, retrospective cohort study. Clin Infect Dis. 2019. https://doi.org/10.1093/cid/ciz031.

  22. Munita JM, Murray BE, Arias CA. Daptomycin for the treatment of bacteraemia due to vancomycin-resistant enterococci. Int J Antimicrob Agents. 2014;44:387–95.

    Article  CAS  Google Scholar 

  23. Whang DW, Miller LG, Partain NM, McKinnell JA. Systematic review and meta-analysis of linezolid and daptomycin for treatment of vancomycin-resistant enterococcal bloodstream infections. Antimicrob Agents Chemother. 2013 Oct;57(10):5013–8. https://doi.org/10.1128/AAC.00714-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balli EP, Venetis CA, Miyakis S. Systematic review and meta-analysis of linezolid versus daptomycin for treatment of vancomycin-resistant enterococcal bacteremia. Antimicrob Agents Chemother. 2014;58(2):734–9. https://doi.org/10.1128/AAC.01289-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chuang YC, Wang JT, Lin HY, Chang SC. Daptomycin versus linezolid for treatment of vancomycin-resistant enterococcal bacteremia: systematic review and meta-analysis. BMC Infect Dis. 2014;14:687. https://doi.org/10.1186/s12879-014-0687-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Britt NS, Potter EM, Patel N, Steed ME. Comparison of the effectiveness and safety of linezolid and daptomycin in vancomycin-resistant enterococcal bloodstream infection: a National Cohort Study of Veterans Affairs Patients. Clin Infect Dis. 2015;61:871–8.

    Article  CAS  Google Scholar 

  27. Britt NS, Potter EM, Patel N, Steed ME. 2017. Effect of continuous and sequential therapy among veterans receiving daptomycin or linezolid for vancomycin-resistant Enterococcus faecium bacteremia. Antimicrob Agents Chemother 61.

  28. Campeau SA, Schuetz AN, Kohner P, Arias CA, Hemarajata P, Bard JD, Humphries RM. 2018. Variability of daptomycin MIC values for Enterococcus faecium when measured by reference broth microdilution and gradient diffusion tests. Antimicrob Agents Chemother 62.

  29. Avery LM, Kuti JL, Weisser M, Egli A, Rybak MJ, Zasowski EJ, et al. Pharmacodynamic analysis of daptomycin-treated enterococcal bacteremia: it is time to change the breakpoint. Clin Infect Dis. 2018;68:1650–7. https://doi.org/10.1093/cid/ciy749.

    Article  Google Scholar 

  30. Shukla BS, Shelburne S, Reyes K, Kamboj M, Lewis JD, Rincon SL, et al. Influence of minimum inhibitory concentration in clinical outcomes of Enterococcus faecium bacteremia treated with daptomycin: is it time to change the breakpoint? Clin Infect Dis. 2016;62:1514–20.

    Article  CAS  Google Scholar 

  31. Akins RL, Rybak MJ. Bactericidal activities of two daptomycin regimens against clinical strains of glycopeptide intermediate-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecium, and methicillin-resistant Staphylococcus aureus isolates in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Chemother. 2001;45:454–9.

    Article  CAS  Google Scholar 

  32. Hall AD, Steed ME, Arias CA, Murray BE, Rybak MJ. Evaluation of standard- and high-dose daptomycin versus linezolid against vancomycin-resistant Enterococcus isolates in an in vitro pharmacokinetic/pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Chemother. 2012;56:3174–80.

    Article  CAS  Google Scholar 

  33. Foolad F, Taylor BD, Shelburne SA, Arias CA, Aitken SL. Association of daptomycin dosing regimen and mortality in patients with VRE bacteraemia: a review. J Antimicrob Chemother. 2018;73:2277–83.

    Article  CAS  Google Scholar 

  34. Dhand A, Bayer AS, Pogliano J, Yang SJ, Bolaris M, Nizet V, et al. Use of antistaphylococcal beta-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: role of enhanced daptomycin binding. Clin Infect Dis. 2011;53:158–63.

    Article  CAS  Google Scholar 

  35. Sakoulas G, Bayer AS, Pogliano J, Tsuji BT, Yang SJ, Mishra NN, et al. Ampicillin enhances daptomycin- and cationic host defense peptide-mediated killing of ampicillin- and vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 2012;56:838–44.

    Article  Google Scholar 

  36. Sakoulas G, Rose W, Nonejuie P, Olson J, Pogliano J, Humphries R, et al. Ceftaroline restores daptomycin activity against daptomycin-nonsusceptible vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 2014;58:1494–500.

    Article  Google Scholar 

  37. Hall Snyder A, Werth BJ, Barber KE, Sakoulas G, Rybak MJ. Evaluation of the novel combination of daptomycin plus ceftriaxone against vancomycin-resistant enterococci in an in vitro pharmacokinetic/pharmacodynamic simulated endocardial vegetation model. J Antimicrob Chemother. 2014;69:2148–54.

    Article  CAS  Google Scholar 

  38. Smith JR, Barber KE, Raut A, Rybak MJ. Beta-lactams enhance daptomycin activity against vancomycin-resistant Enterococcus faecalis and Enterococcus faecium in in vitro pharmacokinetic/pharmacodynamic models. Antimicrob Agents Chemother. 2015;59:2842–8.

    Article  CAS  Google Scholar 

  39. Smith JR, Barber KE, Raut A, Aboutaleb M, Sakoulas G, Rybak MJ. Beta-lactam combinations with daptomycin provide synergy against vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother. 2015;70:1738–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pericas JM, Garcia-de-la-Maria C, Brunet M, Armero Y, Garcia-Gonzalez J, Casals G, et al. Early in vitro development of daptomycin non-susceptibility in high-level aminoglycoside-resistant Enterococcus faecalis predicts the efficacy of the combination of high-dose daptomycin plus ampicillin in an in vivo model of experimental endocarditis. J Antimicrob Chemother. 2017;72:1714–22.

    Article  CAS  Google Scholar 

  41. Kebriaei R, Rice SA, Singh KV, Stamper KC, Dinh AQ, Rios R, Diaz L, Murray BE, Munita JM, Tran TT, Arias CA, Rybak MJ. 2018. Influence of inoculum effect on the efficacy of Daptomycin monotherapy and in combination with beta-lactams against Daptomycin-susceptible Enterococcus faecium harboring LiaSR substitutions. Antimicrob Agents Chemother 62.

  42. Mainardi JL, Gutmann L, Acar JF, Goldstein FW. Synergistic effect of amoxicillin and cefotaxime against Enterococcus faecalis. Antimicrob Agents Chemother. 1995;39:1984–7.

    Article  CAS  Google Scholar 

  43. Brandt CM, Rouse MS, Laue NW, Stratton CW, Wilson WR, Steckelberg JM. Effective treatment of multidrug-resistant enterococcal experimental endocarditis with combinations of cell wall-active agents. J Infect Dis. 1996;173:909–13.

    Article  CAS  Google Scholar 

  44. Fernandez-Hidalgo N, Almirante B, Gavalda J, Gurgui M, Pena C, de Alarcon A, et al. Ampicillin plus ceftriaxone is as effective as ampicillin plus gentamicin for treating enterococcus faecalis infective endocarditis. Clin Infect Dis. 2013;56:1261–8.

    Article  CAS  Google Scholar 

  45. Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Tleyjeh IM, Rybak MJ, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132:1435–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CA is funded through an NIH-NIAID grant K24 AI-AI121296, R01-AI134637, R01-AI093749 and R21AI121519.

JM is funded through the Millennium Science Initiative of the Ministry of Economy, Development and Tourism, and the Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), FONDECYT regular 1171805, Government of Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar A. Arias.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Antimicrobial Development and Drug Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras, G.A., Munita, J.M. & Arias, C.A. Novel Strategies for the Management of Vancomycin-Resistant Enterococcal Infections. Curr Infect Dis Rep 21, 22 (2019). https://doi.org/10.1007/s11908-019-0680-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-019-0680-y

Keywords

Navigation