Sink-Related Outbreaks and Mitigation Strategies in Healthcare Facilities


Purpose of Review

In this review, we summarize recent outbreaks attributed to hospital sinks and examine design features and behaviors that contributed to these outbreaks. The effectiveness of various risk mitigation strategies is presented. Finally, we examine investigational strategies targeted at reducing the risk of sink-related infections.

Recent Findings

Outbreaks of hospital sink-related infections involve a diverse spectrum of microorganisms. They can be attributed to defects in sink design and hospital wastewater systems that promote the formation and dispersion of biofilm, as well as healthcare practitioner and patient behaviors. Risk mitigation strategies are often bundled; while they may reduce clinical cases, sink colonization may persist. Novel approaches targeting biofilms show promise but require more investigation.


Emphasis should be placed on optimizing best practices in sink design and placement to prevent infections. Hospitals should consider developing a rational surveillance and prevention strategy based on the current design and state of their sinks.

This is a preview of subscription content, access via your institution.

Fig. 1


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.

    Kizny Gordon AE, Mathers AJ, Cheong EYL, Gottlieb T, Kotay S, Walker AS, et al. The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections-a systematic review of the literature. Clin Infect Dis. 2017;64(10):1435–44.

    Article  PubMed  Google Scholar 

  2. 2.

    Decker BK, Palmore TN. The role of water in healthcare-associated infections. Curr Opin Infect Dis. 2013;26(4):345–51.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Moffa M, Guo W, Li T, Cronk R, Abebe LS, Bartram J. A systematic review of nosocomial waterborne infections in neonates and mothers. Int J Hyg Environ Health. 2017;220(8):1199–206.

    Article  PubMed  Google Scholar 

  4. 4.

    Ayliffe GAJ, Rabb JR, Collins BJ, Lowbury EJL, Newsom SWB. Pseudomonas aeruginosa in hospital sinks. Lancet. 1974;7:578–81.

    Article  Google Scholar 

  5. 5.

    Kohn J. A study of Ps. pyocyanea cross infection in a burns unit. In: Wallace AB, Wilkinson AW, editors. Research in burns. Edinburgh: E & S Livingstone LTD; 1966. p. 486–501.

  6. 6.

    Breathnach AS, Cubbon MD, Karunaharan RN, Pope CF, Planche TD. Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems. J Hosp Infect. 2012;82(1):19–24.

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Garvey MI, Bradley CW, Tracey J, Oppenheim B. Continued transmission of Pseudomonas aeruginosa from a wash hand basin tap in a critical care unit. J Hosp Infect. 2016;94(1):8–12.

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Garvey MI, Bradley CW, Holden E. Waterborne Pseudomonas aeruginosa transmission in a hematology unit? Am J Infect Control. 2017;28:28.

    Google Scholar 

  9. 9.

    Davis RJ, Jensen SO, Van Hal S, Espedido B, Gordon A, Farhat R, et al. Whole genome sequencing in real-time investigation and management of a Pseudomonas aeruginosa outbreak on a neonatal intensive care unit. Infect Control Hosp Epidemiol. 2015;36(9):1058–64.

    Article  PubMed  Google Scholar 

  10. 10.

    Mayes C, McCracken G, Rooney P. Minimising risk from Ps aeruginosa using tap design. Arch Dis Childhood: Fetal Neonatal Edition. 2014;1:A40.

  11. 11.

    Ambrogi V, Cavalie L, Mantion B, Ghiglia MJ, Cointault O, Dubois D, et al. Transmission of metallo-beta-lactamase-producing Pseudomonas aeruginosa in a nephrology-transplant intensive care unit with potential link to the environment. J Hosp Infect. 2016;92(1):27–9.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Knoester M, de Boer MG, Maarleveld JJ, Claas EC, Bernards AT, de Jonge E, et al. An integrated approach to control a prolonged outbreak of multidrug-resistant Pseudomonas aeruginosa in an intensive care unit. Clin Microbiol Infect. 2014;20(4):O207–15.

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Bedard E, Laferriere C, Charron D, Lalancette C, Renaud C, Desmarais N, et al. Post-outbreak investigation of Pseudomonas aeruginosa faucet contamination by quantitative polymerase chain reaction and environmental factors affecting positivity. Infect Control Hosp Epidemiol. 2015;36(11):1337–43.

    Article  PubMed  Google Scholar 

  14. 14.

    •• Aspelund AS, Sjostrom K, Olsson Liljequist B, Morgelin M, Melander E, Pahlman LI. Acetic acid as a decontamination method for sink drains in a nosocomial outbreak of metallo-beta-lactamase-producing Pseudomonas aeruginosa. J Hosp Infection. 2016;94(1):13–20. This study describes a nosocomial outbreak of drug-resistant Pseudomonas aeruginosa associated with sink drains. As a mitigation strategy, simple and inexpensive weekly treatments of 24% acetic acid were employed, which resulted in negative environmental surveillance cultures and appeared to halt transmission.

    Article  Google Scholar 

  15. 15.

    Wendel AF, Kolbe-Busch S, Ressina S, Schulze-Robbecke R, Kindgen-Milles D, Lorenz C, et al. Detection and termination of an extended low-frequency hospital outbreak of GIM-1-producing Pseudomonas aeruginosa ST111 in Germany. Am J Infect Control. 2015;43(6):635–9.

    Article  PubMed  Google Scholar 

  16. 16.

    Salm F, Deja M, Gastmeier P, Kola A, Hansen S, Behnke M, et al. Prolonged outbreak of clonal MDR Pseudomonas aeruginosa on an intensive care unit: contaminated sinks and contamination of ultra-filtrate bags as possible route of transmission? Antimicrob Resistance Infect Control. 2016;5(53).

  17. 17.

    Johansson E, Welinder-Olsson C, Gilljam M. Genotyping of Pseudomonas aeruginosa isolates from lung transplant recipients and aquatic environment-detected in-hospital transmission. APMIS. 2014;122(2):85–91.

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Vos MC, Voorintholt A, Gommers D, Severin J. Multi resistant VIM-positive Pseudomonas aeruginosa in the health care setting - lessons learned to combat transmission. Int J Infect Dis. 2016;1:288.

    Article  Google Scholar 

  19. 19.

    Schneider H, Geginat G, Hogardt M, Kramer A, Durken M, Schroten H, et al. Pseudomonas aeruginosa outbreak in a pediatric oncology care unit caused by an errant water jet into contaminated siphons. Pediatr Infect Dis J. 2012;31(6):648–50.

    Article  PubMed  Google Scholar 

  20. 20.

    Brandt C, Vavrova A. Drains from patient’s rooms sinks, showers and toilets as an environmental reservoir for carbapenem-resistant Pseudomonas aeruginosa on haematology-oncology wards. Int J Med Microbiol. 2015;1:154–5.

    Google Scholar 

  21. 21.

    Diederen BMW, Hattink-Malipaard CJR, Vloemans AFPM, Hene I, Euser SM, Van Der Reijden WA, et al. A prolonged hospital outbreak with metallo-betalactamase producing Pseudomonas aeruginosa in a burn centre and intensive care unit linked to an environmental reservoir. Clin Microbiol Infect. 2012;3:14.

    Google Scholar 

  22. 22.

    Guleri A, Palmer R, Jackson P, Przybylo M, Sharma R, Peel A, et al. Outbreak report of multidrug-resistant Pseudomonas aeruginosa [MDR-PA] in a cardiac intensive care unit at a Lancashire cardiac centre. Clin Microbiol Infect. 2012;3):13.

  23. 23.

    •• Kossow A, Kampmeier S, Willems S, Berdel WE, Groll AH, Burckhardt B, et al. Control of multidrug-resistant pseudomonas aeruginosa in allogeneic hematopoietic stem cell transplant recipients by a novel bundle including remodeling of sanitary and water supply systems. Clin Infect Dis. 2017;65(6):935–42. This study demonstrates the efficacy of structural controls combined with a bundle of infection prevention measures at reducing MDR-Pseudomonas aeruginosa detection in both the environment and in patients. Self-disinfecting siphons were installed under every sink. These units utilize ultraviolet light, vibration, and heat in combination with an antibacterial coating to prevent biofilm formation. This was used in conjunction with a rimless toilet basin design, optimized shower head and drain design, daily room disinfection, improved hand hygiene practices, and active surveillance and isolation. The bundle succeeded in minimizing the risk of infection as well as environmental contamination.

    Article  PubMed  Google Scholar 

  24. 24.

    Leistner R, Gastmeier P, Salm F. Prolonged outbreak of clonal MDR/XDR P. aeruginosa on an intensive care unit: ultra-filtrate bags as possible route of transmission? Int J Med Microbiol. 2016;306(8 Supplement 1):35.

    Google Scholar 

  25. 25.

    Liese J, Grashorn S, Willmann M, Vogel W, Peter S. Control of multidrug resistant Pseudomonas aeruginosa by environmental disinfection and surveillance. Int J Med Microbiol. 2015;1:130–1.

    Google Scholar 

  26. 26.

    Clarivet B, Grau D, Jumas-Bilak E, Jean-Pierre H, Pantel A, Parer S, et al. Persisting transmission of carbapenemase-producing Klebsiella pneumoniae due to an environmental reservoir in a university hospital, France, 2012 to 2014. Euro Surveill. 2016;21(17):28.

    Article  Google Scholar 

  27. 27.

    Maltezou HC, Tryfinopoulou K, Katerelos P, Ftika L, Pappa O, Tseroni M, et al. Consecutive Serratia marcescens multiclone outbreaks in a neonatal intensive care unit. Am J Infect Control. 2012;40(7):637–42.

    Article  PubMed  Google Scholar 

  28. 28.

    Chapuis A, Amoureux L, Bador J, Gavalas A, Siebor E, Chretien ML, et al. Outbreak of extended-spectrum beta-lactamase producing Enterobacter cloacae with high MICs of quaternary ammonium compounds in a hematology ward associated with contaminated sinks. Front Microbiol. 2016;7:1070.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Starlander G, Melhus A. Minor outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in an intensive care unit due to a contaminated sink. J Hosp Infect. 2012;82(2):122–4.

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Tofteland S, Naseer U, Lislevand JH, Sundsfjord A, Samuelsen O. A long-term low-frequency hospital outbreak of KPC-producing Klebsiella pneumoniae involving intergenus plasmid diffusion and a persisting environmental reservoir. PLoS One. 2013;8(3):e59015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. 31.

    Lowe C, Willey B, O’Shaughnessy A, Lee W, Lum M, Pike K, et al. Outbreak of extended-spectrum beta-lactamase-producing Klebsiella oxytoca infections associated with contaminated handwashing sinks(1). Emerg Infect Dis. 2012;18(8):1242–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    De Geyter D, Blommaert L, Verbraeken N, Sevenois M, Huyghens L, Martini H, et al. The sink as a potential source of transmission of carbapenemase-producing Enterobacteriaceae in the intensive care unit. Antimicrob. 2017;6:24.

    Google Scholar 

  33. 33.

    De Jong E, Hopman J, Hilkens MGEC, Loeffen FLA, Van Leeuwen WB, Melchers WJ, et al. A prolonged outbreak of an extended-spectrum betalactamase producing Klebsiella pneumoniae (EKP) on an ICU due to contamination of sinks. Clin Microbiol Infect. 2012;3:14.

    Google Scholar 

  34. 34.

    Leitner E, Zarfel G, Luxner J, Herzog K, Pekard-Amenitsch S, Hoenigl M, et al. Contaminated handwashing sinks as the source of a clonal outbreak of KPC-2-producing Klebsiella oxytoca on a hematology ward. Antimicrob Agents Chemother. 2015;59(1):714–6.

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Van Oers J, Vos P, Harts A, Koevoets T, Van Beurden L, Beerens M, et al. Interventions to stop the transmission of highly resistant microorganisms in a Dutch intensive care unit. Int J Med Microbiol. 2015;1:153.

    Google Scholar 

  36. 36.

    •• Shaw E, Gavalda L, Camara J, Gasull R, Gallego S, Tubau F, et al. Control of endemic multidrug-resistant Gram-negative bacteria after removal of sinks and implementing a new water-safe policy in an intensive care unit. J Hosp Infect. 2018;98:275–81. Although lacking environmental testing, this study suggests that implementing a water-free environmental in critical care settings might reduce endemic rates of MDR-GNB infection, specifically Klebsiella pneumoniae. Their intervention included deep cleaning and disinfection of drains and valves; water filtering; replacement of siphons and tap aerators; and mandatory use of filtered water from central sinks for daily patient hygiene, or use of 2% chlorhexidine-impregnated wash cloths when water was not needed; as well as the removal of sinks from patient rooms. Their intervention yielded a RR of acquiring MDR-GNB of 0.24 (95% CI 0.17–0.34).

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Seara N, Oteo J, Carrillo R, Perez-Blanco V, Mingorance J, Gomez-Gil R, et al. Interhospital spread of NDM-7-producing Klebsiella pneumoniae belonging to ST437 in Spain. Int J Antimicrob Agents. 2015;46(2):169–73.

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Kotsanas D, Wijesooriya WR, Korman TM, Gillespie EE, Wright L, Snook K, et al. “Down the drain”: carbapenem-resistant bacteria in intensive care unit patients and handwashing sinks. Med J Aust. 2013;198(5):267–9.

    Article  PubMed  Google Scholar 

  39. 39.

    Yablon BR, Dantes R, Tsai V, Lim R, Moulton-Meissner H, Arduino M, et al. Outbreak of Pantoea agglomerans bloodstream infections at an oncology clinic - Illinois, 2012-2013. Infect Control Hosp Epidemiol. 2017;38(3):314–9.

    Article  PubMed  Google Scholar 

  40. 40.

    Wolf I, Bergervoet PWM, Sebens FW, Van den Oever HLA, Savelkoul PHM, Van der Zwet WC. The sink as a correctable source of extended-spectrum beta-lactamase contamination for patients in the intensive care unit. J Hosp Infect. 2014;87(2):126–30.

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Vergara-Lopez S, Dominguez MC, Conejo MC, Pascual A, Rodriguez-Bano J. Wastewater drainage system as occult reservoir in a protracted clonal outbreak dur to metallo-β-lactamase-producing Klebsiella oxytoca. Clin Microbiol Infect 2013; 19(11):E490–8.

  42. 42.

    Umezawa K, Asai S, Ohshima T, Iwashita H, Ohashi M, Sasaki M, et al. Outbreak of drug-resistant Acinetobacter baumannii ST219 caused by oral care using tap water from contaminated hand hygiene sinks as a reservoir. Am J Infect Control. 2015;43(11):1249–51.

    Article  PubMed  Google Scholar 

  43. 43.

    Hong KB, Oh HS, Song JS, Lim JH, Kang DK, Son IS, et al. Investigation and control of an outbreak of imipenem-resistant Acinetobacter baumannii infection in a pediatric intensive care unit. Pediatr Infect Dis J. 2012;31(7):685–90.

    Article  PubMed  Google Scholar 

  44. 44.

    Landelle C, Legrand P, Lesprit P, Cizeau F, Ducellier D, Gouot C, et al. Protracted outbreak of multidrug-resistant acinetobacter baumannii after intercontinental transfer of colonized patients. Infect Control Hosp Epidemiol. 2013;34(2):119–24.

    Article  PubMed  Google Scholar 

  45. 45.

    Guyot A, Turton JF, Garner D. Outbreak of Stenotrophomonas maltophilia on an intensive care unit. J Hosp Infect. 2013;85(4):303–7.

    Article  PubMed  CAS  Google Scholar 

  46. 46.

    Balm MND, Salmon S, Jureen R, Teo C, Mahdi R, Seetoh T, et al. Bad design, bad practices, bad bugs: frustrations in controlling an outbreak of Elizabethkingia meningoseptica in intensive care units. J Hosp Infect. 2013;85(2):134–40.

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Ashraf MS, Swinker M, Augustino KL, Nobles D, Knupp C, Liles D, et al. Outbreak of Mycobacterium mucogenicum bloodstream infections among patients with sickle cell disease in an outpatient setting. Infect Control Hosp Epidemiol. 2012;33(11):1132–6.

    Article  PubMed  Google Scholar 

  48. 48.

    Litvinov N, da Silva MT, van der Heijden IM, Graca MG, Marques de Oliveira L, Fu L, et al. An outbreak of invasive fusariosis in a children’s cancer hospital. Clin Microbiol Infect. 2015;21(3):268.e1–7.

    Article  Google Scholar 

  49. 49.

    •• Soto-Giron MJ, Rodriguez-R LM, Luo C, Elk M, Ryu H, Hoelle J, et al. Biofilms on hospital shower hoses: characterization and implications for nosocomial infections. Appl Environ Microbiol. 2016;82(9):2872–83. This is the first study to utilize metagenomics to characterize the composition of biofilm communities in hospital water pipelines. One significant finding was that the biofilm community harbored genes related to disinfectant tolerance in addition to genes conferring resistance to β-lactam, aminoglycosides, amphenicol and quinolone antibiotics.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. 50.

    Donlan RM. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis. 2001;33(8):1387–92.

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Burmolle M, et al. Interactions in multispecies biofilms: do they actually matter? Trends Microbiol. 2014;22(2):84–91.

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Wendel AF, Ressina S, Kolbe-Busch S, Pfeffer K, MacKenzie CR. Species diversity of environmental GIM-1-producing bacteria collected during a long-term outbreak. Appl Environ Microbiol. 2016;82(12):3605–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. 53.

    Weingarten RA, Johnson RC, Conlan S, Ramsburg AM, Dekker JP, Lau AF, et al. Genomic analysis of hospital plumbing reveals diverse reservoir of bacterial plasmids conferring carbapenem resistance. mBio. 2018;9(1):06.

    Article  Google Scholar 

  54. 54.

    Rahimzadeh G, Gill P, Rezai MS. Characterization and lytic activity of methicillin-resistant Staphylococcus aureus (MRSA) phages isolated from NICU. Australas Med J. 2016;9(6):169–75.

    Article  Google Scholar 

  55. 55.

    Roux D, Aubier B, Cochard H, Quentin R, van der Mee-Marquet N. Centre HAIPGotRdHd. Contaminated sinks in intensive care units: an underestimated source of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the patient environment. J Hosp Infect. 2013;85(2):106–11.

    Article  PubMed  CAS  Google Scholar 

  56. 56.

    Vickery K, Deva A, Jacombs A, Allan J, Valente P, Gosbell IB. Presence of biofilm containing viable multiresistant organisms despite terminal cleaning on clinical surfaces in an intensive care unit. J Hosp Infect. 2012;80(1):52–5.

    Article  PubMed  CAS  Google Scholar 

  57. 57.

    Lalancette C, Charron D, Laferriere C, Dolce P, Deziel E, Prevost M, et al. Hospital drains as reservoirs of Pseudomonas aeruginosa: multiple-locus variable-number of tandem repeats analysis genotypes recovered from faucets. Sink Surfaces Patients Pathogens. 2017;6(3):09.

    Google Scholar 

  58. 58.

    Winder EM, Bonheyo GT. DNA persistence in a sink drain environment. PLoS One. 2015;10(7):e0134798.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. 59.

    Howie RI, John M, Clark J. Assessing the level of bioburden and rate of contamination of high contact surfaces in private, semi-private and ward patient rooms. Am J Infect Control. 2014;1:S37.

    Article  Google Scholar 

  60. 60.

    Ghadakpour M, Bester E, Liss SN, Gardam M, Droppo I, Hota S, et al. Integration and proliferation of Pseudomonas aeruginosa PA01 in multispecies biofilms. Microb Ecol. 2014;68(1):121–31.

    Article  PubMed  CAS  Google Scholar 

  61. 61.

    Herruzo R, Ruiz G, Vizcaino MJ, Rivas L, Perez-Blanco V, Sanchez M. Microbial competition in environmental nosocomial reservoirs and diffusion capacity of OXA48-Klebsiella pneumoniae: potential impact on patients and possible control methods. J. 2017;58(1):E34–41.

    CAS  Google Scholar 

  62. 62.

    Zhou Z, Hu B, Gao X, Bao R, Chen M, Li H. Sources of sporadic Pseudomonas aeruginosa colonizations/infections in surgical ICUs: association with contaminated sink trap. J Infect Chemother. 2016;22(7):450–5.

    Article  PubMed  Google Scholar 

  63. 63.

    Jencson AL, Cadnum JL, Piedrahita C, Donskey CJ. Hospital sinks are a potential nosocomial source of Candida infections. Clin Infect Dis. 2017;65(11):1954–5.

    Article  PubMed  Google Scholar 

  64. 64.

    Hota S, Hirji Z, Stockton K, Lemieux C, Dedier H, Wolfaardt G, et al. Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design. Infect Control Hosp Epidemiol. 2009;30(1):25–33.

    Article  PubMed  Google Scholar 

  65. 65.

    •• Kotay S, Chai W, Guilford W, Barry K, Mathers AJ. Spread from the sink to the patient: in situ study using green fluorescent protein (GFP)-expressing Escherichia coli to model bacterial dispersion from hand-washing sink-trap reservoirs. Appl Environ Microbiol. 2017;83(8):–15. This study employs an experimental design to demonstrate the mechanism of biofilm growth from pipe to sink strainer and subsequent dispersal of bacteria from colonized hospital sink drains to patients. The study also demonstrates that bacterial contamination of sinks can occur via horizontal connections in wastewater plumbing. This work helps to inform risk mitigation strategies.

  66. 66.

    Rogers J, Dowsett AB, Dennis PJ, Lee JV, Keevil CW. Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water systems. App Environ Microbiol. 1994;60(6):1842–51.

    CAS  Google Scholar 

  67. 67.

    •• Gormley M, Aspray TJ, Kelly DA, Rodriguez-Gil C. Pathogen cross-transmission via building sanitary plumbing systems in a full scale pilot test-rig. PLoS One. 2017;12(2):e0171556. Pseudomonas putida is utilized in an experimental model to demonstrate how empty traps can permit aerosolization of pathogens which can be carried via plumbing system airflows between different floors of a building. Empty traps are prevalent in many buildings including hospitals, highlighting the importance of this mechanism of transmission.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. 68.

    •• Mair-Jenkins J, Borges-Stewart R, Harbour C, Cox-Rogers J, Dallman T, Ashton P, et al. Investigation using whole genome sequencing of a prolonged restaurant outbreak of Salmonella Typhimurium linked to the building drainage system, England, February 2015 to March 2016. Euro Surveill. 2017;22(49). This in vivo study investigating a Salmonella enterica serovar Typhimurium outbreak similarly demonstrates the role ineffective traps play in allowing the transmission of contaminated aerosols into the environment, further suggesting the importance of this sink feature in risk mitigation.

  69. 69.

    Kong MY, Lai CKC, Lee SY, Tsang NC. A local experience sharing: hand wash basin as a potential source of carbapenemase-producing enterobacteriaceae transmission in hospital environments. Antimicrobial Resistance and Infection Control Conference: 8th International Congress of the Asia Pacific Society of Infection Control, APSIC. 2017;6(Supplement 2).

  70. 70.

    Varin A, Valot B, Cholley P, Morel C, Thouverez M, Hocquet D, et al. High prevalence and moderate diversity of Pseudomonas aeruginosa in the U-bends of high-risk units in hospital. Int J Hyg Environ Health. 2017;220(5):880–5.

    Article  PubMed  Google Scholar 

  71. 71.

    Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 2005;13:34–40.

    Article  PubMed  CAS  Google Scholar 

  72. 72.

    Fusch C, Pogorzelski D, Main C, Meyer CL, El Helou S, Mertz D. Self-disinfecting sink drains reduce the Pseudomonas aeruginosa bioburden in a neonatal intensive care unit. Acta Paediatr. 2015;104(8):e344–9.

    Article  PubMed  Google Scholar 

  73. 73.

    •• Mathers AJ, Vegesana K, German Mesner I, Barry KE, Pannone A, Baumann J, et al. Intensive care unit wastewater interventions to prevent transmission of multi-species Klebsiella pneumoniae carbapenemase (KPC) producing organisms. Clin Infect Dis. 2018;02:02. This study bundled self-disinfecting siphons with the installation of covers on hoppers. The intervention was associated with a decrease in incidence of MDR- Klebsiella pneumoniae . Although the effect of the sink trap devices alone could not be determined, the proportion of colonized sink drains significantly decreased following the intervention (12/15 [80%] vs 40/840 [5%]; p = 0.001).

    Google Scholar 

  74. 74.

    Garvey MI, Bradley CW, Wilkinson MAC, Bradley CR, Holden E. Engineering waterborne Pseudomonas aeruginosa out of a critical care unit. Int J Hyg Environ Health. 2017;229:1014–9.

    Article  Google Scholar 

  75. 75.

    Baranovsky S, Jumas-Bilak E, Lotthe A, Marchandin H, Parer S, Hicheri Y, et al. Tracking the spread routes of opportunistic premise plumbing pathogens in a haematology unit with water points-of-use protected by antimicrobial filters. J Hosp Infect. 2018;98(1):53–9.

    Article  PubMed  CAS  Google Scholar 

  76. 76.

    •• Hopman J, Tostmann A, Wertheim H, Bos M, Kolwijck E, Akkermans R, et al. Reduced rate of intensive care unit acquired gram-negative bacilli after removal of sinks and introduction of ‘water-free’ patient care. Antimicrob Resist Infect Control. 2017;6:59. This study similarly demonstrates the effectiveness of removing sinks from patient rooms in the intensive care unit setting, and implementing a “water-free” patient care strategy. The strategy resulted in a significant and sustained reduction in patient colonization with GNB.

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Liu R, Yu Z, Guo H, Liu M, Zhang H, Yang M. Pyrosequencing analysis of eukaryotic and bacterial communities in faucet biofilms. Sci Total Environ. 2012;435–436:124–31.

    Article  PubMed  CAS  Google Scholar 

  78. 78.

    Bridier A, Sanchew-Vizuete P, Guilbaud M, Piard JC, Naitali M, et al. Biofilm-associated persistence of food-borne pathogens. Food Microbiol. 2015;45:167–78.

    Article  PubMed  CAS  Google Scholar 

  79. 79.

    Wang H, Wang H, Xing T, Wu N, Xu X, et al. Removal of Salmonella biofilm formed under meat processing environment by surfactant in combination with bio-enzymes. LWT Food Sci Technol. 2016;66:298–304.

    Article  CAS  Google Scholar 

  80. 80.

    Brown HL, Hanman K, Reuter M, Betts RP, Van Vliet AHM. Camplylobacter jejuni biofilms contain extracellular DNA and are sensitive to DNase I treatment. Front Microbiol. 2015;6:699.

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Kim SH, Park C, Lee EJ, Bang WS, Kim YJ, Kim JS. Biofilm formation of campylobacter strains isolated from raw chickens and its reduction with DNase I treatment. Food Control. 2017;71:94–100.

    Article  CAS  Google Scholar 

  82. 82.

    Coughlan LM, Cotter PD, Hill C, Alvarez-Ordonez A. New weapons to fight old enemies: novel strategies for the (bio) control of bacterial biofilms in the food industry. Front Microbiol. 2016;7:1641.

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Muller MP, MacDougall C, Lim M, Ontario Agency for Health P, Promotion Public Health O, Provincial Infectious Diseases Advisory Committee on Infection P, et al. Antimicrobial surfaces to prevent healthcare-associated infections: a systematic review. J Hosp Infect. 2016;92(1):7–13.

    Article  PubMed  CAS  Google Scholar 

  84. 84.

    Soothill JS. Carbapenemase-bearing Klebsiella spp. in sink drains: investigation into the potential advantage of copper pipes. J Hosp Infect. 2016;93(2):152–4.

    Article  PubMed  CAS  Google Scholar 

  85. 85.

    Wang Q, Larese-Casanova P, Webster TJ. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels. Int J Nanomedicine. 2015;10:2885–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  86. 86.

    Orti-Lucas RM, Munoz-Miguel J. Effectiveness of surface coatings containing silver ions in bacterial decontamination in a recovery unit. Antimicrob. 2017;6:61.

    Google Scholar 

  87. 87.

    Livingstone S, Cadnum JL, Jencson AL, Gestrich S, Donskey CJ. That sinking feeling: eradicating Pseudomonas and Candida auris from a sink drain system using ozonated water. Paper presented at The Society for Healthcare Epidemiology of America; Portland; 2018 Apr 18–20.

  88. 88.

    Caselli E, D’Accolti M, Vandini A, Lanzoni L, Camerada MT, et al. Impact of a probiotic-based cleaning intervention on the microbiota ecosystem of hospital surfaces: focus on the resistome remodulation. PLoS One. 2016;11(2):e10148857.

    Article  CAS  Google Scholar 

  89. 89.

    CSA Group. CSA Z8000-11 Canadian health care facilities – planning, design and construction. Mississauga; CSA Group. 2011;

  90. 90.

    American Institute of Architects Academy of Architecture for Health and The Facility Guidelines Institute. Guidelines for design and construction of hospital and health care facilities. Washington: The American Institute of Architects; 2014.

    Google Scholar 

Download references


We would like to thank Infection Prevention and Control construction leads, Jessica Fullerton and Karl Zebarth, for the details they provided regarding the existing national facility engineering standards. We would also like to thank Ani Orchanian-Cheff for her assistance in performing the literature search and Bryan Graham Huck for his sink illustration.

Author information



Corresponding author

Correspondence to Susy S. Hota.

Ethics declarations

Conflict of Interest

We declare that we have no conflicts of interest relevant to this manuscript. Full disclosures available upon request.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Healthcare Associated Infections

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parkes, L.O., Hota, S.S. Sink-Related Outbreaks and Mitigation Strategies in Healthcare Facilities. Curr Infect Dis Rep 20, 42 (2018).

Download citation


  • Sink
  • Hand hygiene
  • Hospital-associated infections
  • Infection control
  • Biofilm
  • Multidrug-resistant organisms