Multidrug-Resistant Pseudomonas Infections: Hard to Treat, But Hope on the Horizon?

  • Lynn Nguyen
  • Joshua Garcia
  • Katherine Gruenberg
  • Conan MacDougallEmail author
Antimicrobial Development and Drug Resistance (A Pakyz, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Antimicrobial Development and Drug Resistance


Purpose of Review

As the sixth most common nosocomial pathogen in the USA, Pseudomonas aeruginosa poses a significant threat to patients within the healthcare system. Its intrinsic and acquired resistance mechanisms also significantly limit the choices for antimicrobial therapy, prompting an increase in the research and development of antibacterial agents with enhanced activity against multidrug-resistant (MDR) P. aeruginosa. While many approved and pipeline antibiotics have activity against wild-type P. aeruginosa, only four new antibiotics have promising activity against MDR P. aeruginosa: ceftazidime-avibactam (Avycaz®), ceftolozane-tazobactam (Zerbaxa®), cefiderocol, and imipenem-cilastatin/relebactam. The goal of this paper is to review the epidemiology and mechanisms of resistance in P. aeruginosa as well as explore the newly approved and pipeline agents that overcome these mechanisms of resistance.

Recent Findings

Ceftazidime-avibactam and ceftolozane-tazobactam are currently FDA-approved and available for use, while cefiderocol and imipenem-cilastatin/relebactam are in development. Current evidence suggests ceftazidime-avibactam and ceftolozane-tazobactam both may have a role in treatment of MDR P. aeruginosa infections. Ceftolozane-tazobactam appears to be modestly more potent against P. aeruginosa, but emergence of resistance has been noted in various reported cases. Trials are ongoing for cefiderocol and imipenem-cilastatin/relebactam and early results appear promising.


The aforementioned agents fill important gaps in the antibiotic armamentarium, particularly for patients with MDR P. aeruginosa infections who otherwise have extremely limited and often toxic antibiotic options. However, resistance to all of these agents will likely emerge, and additional antibiotic development is warranted to provide sufficient options to successfully manage MDR P. aeruginosa infections.


Pseudomonas aeruginosa Antimicrobial resistance Multidrug resistant Treatment Newly approved agents Pipeline antibiotics 


Compliance with Ethical Standards

Conflict of Interest

Lynn Nguyen, Joshua Garcia, and Katherine Gruenberg declare that they have no conflict of interest. Conan MacDougall has received honoraria as a consultant for Shionogi Ltd. and grants from Merck & Co.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Jefferies JMC, Cooper T, Yam T, Clarke SC. Pseudomonas aeruginosa outbreaks in the neonatal intensive care unit—a systematic review of risk factors and environmental sources. J Med Microbiol. 2012;61:1052–61.CrossRefPubMedGoogle Scholar
  2. 2.
    Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37:1288–301.CrossRefPubMedGoogle Scholar
  3. 3.
    • National Healthcare Safety Network. NHSN antibiotic resistance data. CDC website. Available at: Accessed 13 Dec 2017. The CDC provides the current landscape of antimicrobial susceptibilities, showing the growing problem resistance.
  4. 4.
    Strateva T, Yordanov D. Pseudomonas aeruginosa—a phenomenon of bacterial resistance. J Med Microbiol. 2009;58:1133–48.CrossRefPubMedGoogle Scholar
  5. 5.
    Wolter DJ, Lister PD. Mechanisms of β-lactam resistance among Pseudomonas aeruginosa. Curr Pharm Des. 2013;19:209–22.CrossRefPubMedGoogle Scholar
  6. 6.
    • Juan C, Moyá B, Pérez JL, Oliver A. Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level β-lactam resistance involves three AmpD homologues. Antimicrob Agents Chemother. 2006;50:1780–7. Illustrative in vitro study of the regulation of beta-lactamase expression in Pseudomonas and consequences of stable derepression. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Drusano GL. Pharmacology of drug resistance. In: Mayers DL, Lerner SA, Ouellette M, Sobel JD, editors. Antimicrobial drug resistance. Totowa: Humana Press; 2009. p. 33–42.CrossRefGoogle Scholar
  8. 8.
    Hancock REW, Brinkman FSL. Function of Pseudomonas porins in uptake and efflux. Annu Rev Microbiol. 2002;56:17–38.CrossRefPubMedGoogle Scholar
  9. 9.
    Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother. 2001;47:247–50.CrossRefPubMedGoogle Scholar
  10. 10.
    • Patel JB, Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 2017. The current CLSI guidelines give context to the effectiveness of different antibiotics to Pseudomonas aeruginosa . Google Scholar
  11. 11.
    Livermore DM, Yang YJ. Comparative activity of meropenem against Pseudomonas aeruginosa strains with well-characterized resistance mechanisms. J Antimicrob Chemother. 1989;24(Suppl A):149–59.CrossRefPubMedGoogle Scholar
  12. 12.
    Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22:582–610.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis. 2007;45:88–94.CrossRefPubMedGoogle Scholar
  14. 14.
    Higgins PG, Fluit AC, Milatovic D, Verhoef J, Schmitz F-J. Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents. 2003;21:409–13.CrossRefPubMedGoogle Scholar
  15. 15.
    Sainsbury S, Bird L, Rao V, Shepherd SM, Stuart DI, Hunter WN, et al. Crystal structures of penicillin-binding protein 3 from Pseudomonas aeruginosa: comparison of native and antibiotic-bound forms. J Mol Biol. 2011;405:173–84.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Falcone M, Paterson D. Spotlight on ceftazidime/avibactam: a new option for MDR Gram-negative infections. J Antimicrob Chemother. 2016;71:2713–22.CrossRefPubMedGoogle Scholar
  17. 17.
    Huband MD, Castanheira M, Flamm RK, Farrell DJ, Jones RN, Sader HS. In vitro activity of ceftazidime-avibactam against contemporary Pseudomonas aeruginosa isolates from U.S. medical centers by census region, 2014. Antimicrob Agents Chemother. 2016;60:2537–41.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sader HS, Castanheira M, Flamm RK, Farrell DJ, Jones RN. Antimicrobial activity of ceftazidime-avibactam against Gram-negative organisms collected from U.S. medical centers in 2012. Antimicrob Agents Chemother. 2014;58:1684–92.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sader HS, Castanheira M, Mendes RE, Flamm RK, Farrell DJ, Jones RN. Ceftazidime-avibactam activity against multidrug-resistant Pseudomonas aeruginosa isolated in U.S. medical centers in 2012 and 2013. Antimicrob Agents Chemother. 2015;59:3656–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sader HS, Castanheira M, Farrell DJ, Flamm RK, Jones RN. Ceftazidime-avibactam activity when tested against ceftazidime-nonsusceptible Citrobacter spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa from United States medical centers (2011–2014). Diagn Microbiol Infect Dis. 2015;83:389–94.CrossRefPubMedGoogle Scholar
  21. 21.
    Tominaga N, Edeki T, Li J, Learoyd M, Bouw MR, Das S. Phase I study assessing the safety, tolerability, and pharmacokinetics of avibactam and ceftazidime-avibactam in healthy Japanese volunteers. J Infect Chemother. 2015;21(8):551–8.CrossRefPubMedGoogle Scholar
  22. 22.
    US Food and Drug Administration Anti-Infective Drugs Advisory Committee. Cerexa, ceftazidime-avibactam for injection,2014. Available at: Accessed 18 Nov 2017.
  23. 23.
    Mazuski JE, Gasink LB, Armstrong J, Broadhurst H, Stone GG, Rank D, et al. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: results from a randomized, controlled, double-blind, phase 3 program. Clin Infect Dis. 2016;62:1380–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Qin X, Tran BG, Kim MJ, Wang L, Nguyen DA, Chen Q, et al. A randomised, double-blind, phase 3 study comparing the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem for complicated intra-abdominal infections in hospitalised adults in Asia. Int J Antimicrob Agents. 2017;49:579–88.CrossRefPubMedGoogle Scholar
  25. 25.
    Wagenlehner FM, Sobel JD, Newell P, Armstrong J, Huang X, Stone GG, et al. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: RECAPTURE, a Phase 3 randomized trial program. Clin Infect Dis. 2016;63:754–62.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vazquez JA, Patzán LDG, Stricklin D, Duttaroy DD, Kreidly Z, Lipka J, et al. Efficacy and safety of ceftazidime–avibactam versus imipenem–cilastatin in the treatment of complicated urinary tract infections, including acute pyelonephritis, in hospitalized adults: results of a prospective, investigator-blinded, randomized study. Curr Med Res Opin. 2012;28:1921–31.CrossRefPubMedGoogle Scholar
  27. 27.
    Lucasti C, Popescu I, Ramesh MK, Lipka J, Sable C. Comparative study of the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infections in hospitalized adults: results of a randomized, double-blind, Phase II trial. J Antimicrob Chemother. 2013;68:1183–92.CrossRefPubMedGoogle Scholar
  28. 28.
    Avycaz [package insert]. Irvine. GlaxoSmithKline: CA; 2015.Google Scholar
  29. 29.
    Carmeli Y, Armstrong J, Laud PJ, Newell P, Stone G, Wardman A, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis. 2016;16:661–73.CrossRefPubMedGoogle Scholar
  30. 30.
    • Torres A, Zhong N, Pachl J, Timsit J-F, Kollef M, Chen Z, et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis. 2017; This randomized controlled trial evaluates ceftazidime-avibactam as an alternative to meropenem in the treatment of nosocomial pneumonia caused by Gram-negative pathogens, including Pseudomonas aeruginosa .
  31. 31.
    Xipell M, Bodro M, Marco F, Losno RA, Cardozo C, Soriano A. Clinical experience with ceftazidime/avibactam in patients with severe infections, including meningitis and lung abscesses, caused by extensively drug-resistant Pseudomonas aeruginosa. Int J Antimicrob Agents. 2017;49:266–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Livermore DM, Mushtaq S, Meunier D, Hopkins KL, Hill R, Adkin R, et al. Activity of ceftolozane/tazobactam against surveillance and ‘problem’ Enterobacteriaceae, Pseudomonas aeruginosa and non-fermenters from the British Isles. J Antimicrob Chemother. 2017;72:2278–89.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    • van Duin D, Bonomo RA. Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin Infect Dis. 2016;63:234–41. This is a useful comparative review of the mechanism of action, spectrum of activity, and pharmacokinetics of ceftazidime-avibactam and ceftolozane-tazobactam. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Moyá B, Zamorano L, Juan C, Ge Y, Oliver A. Affinity of the new cephalosporin CXA-101 to penicillin-binding proteins of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54:3933–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Moyá B, Beceiro A, Cabot G, Juan C, Zamorano L, Alberti S, et al. Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother. 2012;56:4771–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Farrell DJ, Flamm RK, Sader HS, Jones RN. Antimicrobial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2011–2012). Antimicrob Agents Chemother. 2013;57:6305–10.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zerbaxa [package insert]. Syracuse, NY: Merck & Co., Inc; 2014.Google Scholar
  38. 38.
    Miller B, Hershberger E, Benziger D, Trinh M, Friedland I. Pharmacokinetics and safety of intravenous ceftolozane-tazobactam in healthy adult subjects following single and multiple ascending doses. Antimicrob Agents Chemother. 2012;56:3086–91.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Natesan S, Pai MP, Lodise TP. Determination of alternative ceftolozane/tazobactam dosing regimens for patients with infections due to Pseudomonas aeruginosa with MIC values between 4 and 32 mg/L. J Antimicrob Chemother. 2017;72:2813–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Solomkin J, Hershberger E, Miller B, Popejoy M, Friedland I, Steenbergen J, et al. Ceftolozane/tazobactam plus metronidazole for complicated intra-abdominal infections in an era of multidrug resistance: results from a randomized, double-blind, phase 3 trial (ASPECT-cIAI). Clin Infect Dis. 2015;60:1462–71.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wagenlehner FM, Umeh O, Steenbergen J, Yuan G, Darouiche RO. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet. 2015;385:1949–56.CrossRefPubMedGoogle Scholar
  42. 42.
    Haidar G, Philips NJ, Shields RK, Snyder D, Cheng S, Potoski BA, et al. Ceftolozane-tazobactam for the treatment of multidrug-resistant Pseudomonas aeruginosa infections: clinical effectiveness and evolution of resistance. Clin Infect Dis. 2017;65:110–20.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Castón JJ, la TÁD, Ruiz-Camps I, Sorlí ML, Torres V, Torre-Cisneros J. Salvage therapy with ceftolozane-tazobactam for multidrug-resistant pseudomonas aeruginosa infections. Antimicrob Agents Chemother. 2017;61:e02136–16.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Gelfand MS, Cleveland KO. Ceftolozane/tazobactam therapy of respiratory infections due to multidrug-resistant Pseudomonas aeruginosa. Clin Infect Dis. 2015;61:853–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Patel UC, Nicolau DP, Sabzwari RK. Successful treatment of multi-drug resistant Pseudomonas aeruginosa bacteremia with the recommended renally adjusted ceftolozane/tazobactam regimen. Infect Dis Ther. 2016;5:73–9.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hernández-Tejedor A, Merino-Vega CD, Martín-Vivas A, de L-GRR, Delgado-Iribarren A, Gabán-Díez Á, et al. Successful treatment of multidrug-resistant Pseudomonas aeruginosa breakthrough bacteremia with ceftolozane/tazobactam. Infection. 2017;45:115–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Sousa Dominguez A, Perez-Rodríguez MT, Nodar A, Martinez-Lamas L, Perez-Landeiro A, Crespo Casal M. Successful treatment of MDR Pseudomonas aeruginosa skin and soft-tissue infection with ceftolozane/tazobactam. J Antimicrob Chemother. 2017;72:1262–3.PubMedGoogle Scholar
  48. 48.
    Castaldo N, Givone F, Peghin M, Righi E, Sartor A, Bassetti M. Multidrug-resistant Pseudomonas aeruginosa skin and soft-tissue infection successfully treated with ceftolozane/tazobactam. J Glob Antimicrob Resist. 2017;9:100–2.CrossRefPubMedGoogle Scholar
  49. 49.
    Gentile I, Buonomo AR, Maraolo AE, Scotto R, De Zottis F, Di Renzo G, et al. Successful treatment of post-surgical osteomyelitis caused by XDR Pseudomonas aeruginosa with ceftolozane/tazobactam monotherapy. J Antimicrob Chemother. 2017;72(9):2678–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Aye C, Williams M, Horvath R. Multidrug resistant Pseudomonas mycotic pseudoaneurysm following cardiac transplant bridged by ventricular assistant device. Case Rep Infect Dis. 2017;2017:1–4. Scholar
  51. 51.
    Peghin M, Maiani M, Castaldo N, Givone F, Righi E, Lechiancole A, et al. Ceftolozane/tazobactam for the treatment of MDR Pseudomonas aeruginosa left ventricular assist device infection as a bridge to heart transplant. Infection. 2017:1–3.Google Scholar
  52. 52.
    Vickery SB, McClain D, Wargo KA. Successful use of ceftolozane-tazobactam to treat a pulmonary exacerbation of cystic fibrosis caused by multidrug-resistant Pseudomonas aeruginosa. Pharmacotherapy. 2016;36:e154–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Buehrle DJ, Shields RK, Chen L, Hao B, Press EG, Alkrouk A, et al. Evaluation of the in vitro activity of ceftazidime-avibactam and ceftolozane-tazobactam against meropenem-resistant Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother. 2016;60:3227–31.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Grupper M, Sutherland C, Nicolau DP. Multicenter evaluation of ceftazidime-avibactam and ceftolozane-tazobactam inhibitory activity against meropenem-nonsusceptible Pseudomonas aeruginosa from blood, respiratory tract, and wounds. Antimicrob Agents Chemother. 2017;61:e00875–17.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Humphries RM, Hindler JA, Wong-Beringer A, Miller SA. Activity of ceftolozane-tazobactam and ceftazidime-avibactam against beta-lactam resistant Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother. 2017;AAC.01858–17.Google Scholar
  56. 56.
    Page MGP. Siderophore conjugates. Ann N Y Acad Sci. 2013;1277:115–26.CrossRefPubMedGoogle Scholar
  57. 57.
    Ito A, Sato T, Ota M, Takemura M, Nishikawa T, Toba S, et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against gram-negative bacteria. Antimicrob Agents Chemother. 2018;62:e01454–17. Scholar
  58. 58.
    Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. In vitro activity of the siderophore cephalosporin, cefiderocol, against a recent collection of clinically relevant Gram-negative bacilli from North America and Europe, including carbapenem-nonsusceptible isolates (SIDERO-WT-2014 Study). Antimicrob Agents Chemother. 2017;61:e00093–17. Scholar
  59. 59.
    • Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. In vitro activity of the siderophore cephalosporin, cefiderocol, against carbapenem-nonsusceptible and multidrug-resistant isolates of gram-negative bacilli collected worldwide in 2014 to 2016. Antimicrob Agents Chemother. 2018;62:e01968–17. This study describes the in vitro activity of cefiderocol against multidrug-resistant Gram-negative clinical isolates alongside comparator antimicrobials. PubMedPubMedCentralGoogle Scholar
  60. 60.
    Lob SH, Hackel MA, Kazmierczak KM, Young K, Motyl MR, Karlowsky JA, et al. In vitro activity of imipenem-relebactam against Gram-negative ESKAPE pathogens isolated by clinical laboratories in the United States in 2015 (results from the SMART Global Surveillance Program). Antimicrob Agents Chemother. 2017;61:e02209–16. Scholar
  61. 61.
    Katsube T, Wajima T, Ishibashi T, Arjona Ferreira JC, Echols R. Pharmacokinetic/pharmacodynamic modeling and simulation of cefiderocol, a parenteral siderophore cephalosporin, for dose adjustment based on renal function. Antimicrob Agents Chemother. 2016;61:e01381–16. Scholar
  62. 62.
    Ito A, Nishikawa T, Matsumoto S, Yoshizawa H, Sato T, Nakamura R, et al. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60:7396–401.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Ito A, Kohira N, Bouchillon SK, West J, Rittenhouse S, Sader HS, et al. In vitro antimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria. J Antimicrob Chemother. 2016;71:670–7.CrossRefPubMedGoogle Scholar
  64. 64.
    Dobias J, Dénervaud-Tendon V, Poirel L, Nordmann P. Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens. Eur J Clin Microbiol Infect Dis. 2017;36:2319–27.CrossRefPubMedGoogle Scholar
  65. 65.
    Monogue ML, Tsuji M, Yamano Y, Echols R, Nicolau DP. Efficacy of humanized exposures of cefiderocol (s-649266) against a diverse population of gram-negative bacteria in a murine thigh infection model. Antimicrob Agents Chemother. 2017;61:e01022–17.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Portsmouth S, Van Veenhuyzen D, Echols R, et al. (2017). Poster 1869: Clinical response of cefiderocol compared with imipenem/cilastatin in the treatment of adults with complicated urinary tract infections with or without pyelonephritis or acute uncomplicated pyelonephritis: results from a multicenter, double-blind, randomized study (APEKS-cUTI). IDWeek 2017, San Diego, CA.Google Scholar
  67. 67.
    Blizzard TA, Chen H, Kim S, Wu J, Bodner R, Gude C, et al. Discovery of MK-7655, a β-lactamase inhibitor for combination with Primaxin®. Bioorg Med Chem Lett. 2014;24:780–5.CrossRefPubMedGoogle Scholar
  68. 68.
    Livermore DM, Jamrozy D, Mushtaq S, Nichols WW, Young K, Woodford N. AmpC β-lactamase induction by avibactam and relebactam. J Antimicrob Chemother. 2017;72:3342–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Livermore DM, Warner M, Mushtaq S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother. 2013;68:2286–90.PubMedGoogle Scholar
  70. 70.
    Hirsch EB, Ledesma KR, Chang K-T, Schwartz MS, Motyl MR, Tam VH. In vitro activity of mk-7655, a novel β-lactamase inhibitor, in combination with imipenem against carbapenem-resistant Gram-negative bacteria. Antimicrob Agents Chemother. 2012;56(7):3753–7.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lapuebla A, Abdallah M, Olafisoye O, Cortes C, Urban C, Landman D, et al. Activity of imipenem with relebactam against gram-negative pathogens from New York City. Antimicrob Agents Chemother. 2015;59:5029–31.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Coleman K. Diazabicyclooctanes (DBOs): a potent new class of non-β-lactam β-lactamase inhibitors. Curr Opin Microbiol. 2011;14(5):550–5.CrossRefPubMedGoogle Scholar
  73. 73.
    • Lucasti C, Vasile L, Sandesc D, Venskutonis D, McLeroth P, Lala M, et al. Phase 2, dose-ranging study of relebactam with imipenem-cilastatin in subjects with complicated intra-abdominal infection. Antimicrob Agents Chemother. 2016;60:6234–43. This prospective phase II randomized controlled trial determined that imipenem-cilastatin/relebactam was non-inferior to imipenem-cilastatin plus placebo for the treatment of complicated intra-abdominal infections. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sims M, Mariyanovski V, McLeroth P, Akers W, Lee Y-C, Brown ML, et al. Prospective, randomized, double-blind, Phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections. J Antimicrob Chemother. 2017;72:2616–26.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lynn Nguyen
    • 1
  • Joshua Garcia
    • 2
  • Katherine Gruenberg
    • 1
  • Conan MacDougall
    • 1
    Email author
  1. 1.Department of Clinical PharmacyUniversity of California San Francisco School of PharmacySan FranciscoUSA
  2. 2.Department of Pharmacy PracticeMarshall B. Ketchum University College of PharmacyFullertonUSA

Personalised recommendations