Skip to main content

Advertisement

Log in

Carbapenem-Resistant Enterobacteriaceae Infections in Children

  • Pediatric Infectious Diseases (I Brook, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Carbapenem-resistant Enterobacteriaceae (CRE) are an emerging global public health threat. Infections due to CRE are associated with significant morbidity and mortality. Few therapeutic options are available for treatment of these infections, and optimal antibiotic treatment regimens are unclear. Along with the rapidly increasing prevalence of CRE in the USA and worldwide, several studies have described the epidemiology of CRE in the adult population. While CRE are now also reported sporadically in children, there is a significant lack of data on the epidemiology, risk factors, treatment, and outcomes in this population. This article provides a comprehensive review of what is known to date about CRE, including clinical and molecular epidemiology, microbiologic diagnosis, antibiotic treatment options, and outcomes. In particular, this review will focus on the available data on CRE in the pediatric population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis. 2008;46(2):155–64.

    Article  PubMed  Google Scholar 

  2. Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR. 2013;62(9):165–70.

  3. Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, et al. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol. 2009;30(10):972–6.

    Article  PubMed  Google Scholar 

  4. Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53(1):60–7.

    Article  PubMed  Google Scholar 

  5. Satlin MJ, Jenkins SG, Walsh TJ. The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2014;58(9):1274–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Logan LK. Carbapenem-resistant Enterobacteriaceae: an emerging problem in children. Clin Infect Dis. 2012;55(6):852–9. Summarizes available pediatric reports of CRE infection through 2012, including epidemiology, risk factors, antimicrobial susceptibility, and treatment of these patients. This is the only review of pediatric CRE infection.

    Article  PubMed  CAS  Google Scholar 

  7. Sievert DMP, Ricks PP, Edwards JRMS, Schneider AMPH, Patel JP, Srinivasan AMD, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol. 2013;34(1):1–14.

    Article  PubMed  Google Scholar 

  8. Rhomberg PR, Jones RN. Summary trends for the meropenem yearly susceptibility test information collection program: a 10-year experience in the United States (1999–2008). Diagn Microbiol Infect Dis. 2009;65(4):414–26.

    Article  PubMed  Google Scholar 

  9. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17(10):1791–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Centers for Disease Control and Prevention. Carbapenem-resistant Enterobacteriaceae (CRE) infection. 2015. http://www.cdc.gov/hai/organisms/cre/cre-clinicians.html. Accessed 6 Aug 2015.

  11. Kitchel B, Rasheed JK, Patel JB, Srinivasan A, Navon-Venezia S, Carmeli Y, et al. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother. 2009;53(8):3365–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kaiser RM, Castanheira M, Jones RN, Tenover F, Lynfield R. Trends in Klebsiella pneumoniae carbapenemase-positive K. pneumoniae in US hospitals: report from the 2007–2009 SENTRY Antimicrobial Surveillance Program. Diagn Microbiol Infect Dis. 2013;76(3):356–60.

    Article  PubMed  Google Scholar 

  13. Tzouvelekis LS, Markogiannakis A, Piperaki E, Souli M, Daikos GL. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2014;20:862–72. This is the largest and most recent review evaluating available literature on treatment of CRE infections in adult patients.

    Article  PubMed  CAS  Google Scholar 

  14. Guh AY, Bulens SN, Mu Y, Jacob JT, Reno J, Scott J, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in 7 US communities, 2012–2013. JAMA. 2015;314(14):1479–87.

    Article  PubMed  Google Scholar 

  15. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13(9):785–96.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Temkin E, Adler A, Lerner A, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann N Y Acad Sci. 2014;1323:22–42. Recent review article on CRE in adult patients with emphasis on epidemiology and control.

    Article  PubMed  CAS  Google Scholar 

  17. Nordmann P, Poirel L. Strategies for identification of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2013;68(3):487–9.

    Article  PubMed  CAS  Google Scholar 

  18. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Wayne: CLSI; 2015. M100-S25.

    Google Scholar 

  19. Centers for Disease Control and Prevention. FAQs about choosing and implementing a CRE definition. 2015. http://www.cdc.gov/hai/organisms/cre/definition.html. Accessed 11 Aug 2015.

  20. Landman D, Salamera J, Singh M, Quale J. Accuracy of carbapenem nonsusceptibility for identification of KPC-possessing Enterobacteriaceae by use of the revised CLSI breakpoints. J Clin Microbiol. 2011;49(11):3931–3.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chea N, Bulens SN, Kongphet-Tran T, Lynfield R, Shaw KM, Vagnone PS, et al. Improved phenotype-based definition for identifying carbapenemase producers among carbapenem-resistant Enterobacteriaceae. Emerg Infect Dis. 2015;21(9):1611–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45(4):1151–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Braykov NP, Eber MR, Klein EY, Morgan DJ, Laxminarayan R. Trends in resistance to carbapenems and third-generation cephalosporins among clinical isolates of Klebsiella pneumoniae in the United States, 1999–2010. Infect Control Hosp Epidemiol. 2013;34(3):259–68.

    Article  PubMed  Google Scholar 

  24. Davies TA, Marie Queenan A, Morrow BJ, Shang W, Amsler K, He W, et al. Longitudinal survey of carbapenem resistance and resistance mechanisms in Enterobacteriaceae and non-fermenters from the USA in 2007–09. J Antimicrob Chemother. 2011;66(10):2298–307.

    Article  PubMed  CAS  Google Scholar 

  25. Lin MY, Lyles-Banks RD, Lolans K, Hines DW, Spear JB, Petrak R, et al. The importance of long-term acute care hospitals in the regional epidemiology of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis. 2013;57(9):1246–52.

    Article  PubMed  CAS  Google Scholar 

  26. Kritsotakis EI, Tsioutis C, Roumbelaki M, Christidou A, Gikas A. Antibiotic use and the risk of carbapenem-resistant extended-spectrum-{beta}-lactamase-producing Klebsiella pneumoniae infection in hospitalized patients: results of a double case–control study. J Antimicrob Chemother. 2011;66(6):1383–91.

    Article  PubMed  CAS  Google Scholar 

  27. Falagas ME, Rafailidis PI, Kofteridis D, Virtzili S, Chelvatzoglou FC, Papaioannou V, et al. Risk factors of carbapenem-resistant Klebsiella pneumoniae infections: a matched case control study. J Antimicrob Chemother. 2007;60(5):1124–30.

    Article  PubMed  CAS  Google Scholar 

  28. Wu D, Cai J, Liu J. Risk factors for the acquisition of nosocomial infection with carbapenem-resistant Klebsiella pneumoniae. South Med J. 2011;104(2):106–10.

    Article  PubMed  Google Scholar 

  29. Gasink LB, Edelstein PH, Lautenbach E, Synnestvedt M, Fishman NO. Risk factors and clinical impact of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Infect Control Hosp Epidemiol. 2009;30(12):1180–5.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Swaminathan M, Sharma S, Poliansky Blash S, Patel G, Banach DB, Phillips M, et al. Prevalence and risk factors for acquisition of carbapenem-resistant Enterobacteriaceae in the setting of endemicity. Infect Control Hosp Epidemiol. 2013;34(8):809–17.

    Article  PubMed  Google Scholar 

  31. Schwaber MJ, Klarfeld-Lidji S, Navon-Venezia S, Schwartz D, Leavitt A, Carmeli Y. Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob Agents Chemother. 2008;52(3):1028–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol. 2008;29(12):1099–106.

    Article  PubMed  Google Scholar 

  33. Logan LK, Renschler JP, Gandra S, Weinstein RA, Laxminarayan R, Centers for Disease Control and Prevention Epicenters Program. Carbapenem-resistant Enterobacteriaceae in children, United States, 1999–2012. Emerg Infect Dis. 2015.

  34. Kehl SC, Dowzicky MJ. Global assessment of antimicrobial susceptibility among gram-negative organisms collected from pediatric patients between 2004 and 2012: results from the Tigecycline evaluation and surveillance trial. J Clin Microbiol. 2015;53(4):1286–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Limbago BM, Rasheed JK, Anderson KF, Zhu W, Kitchel B, Watz N, et al. IMP-producing carbapenem-resistant Klebsiella pneumoniae in the United States. J Clin Microbiol. 2011;49(12):4239–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Oteo J, Hernandez-Almaraz JL, Gil-Anton J, Vindel A, Fernandez S, Bautista V, et al. Outbreak of vim-1-carbapenemase-producing Enterobacter cloacae in a pediatric intensive care unit. Pediatr Infect Dis J. 2010;29(12):1144–6.

    Article  PubMed  Google Scholar 

  37. Stoesser N, Giess A, Batty EM, Sheppard AE, Walker AS, Wilson DJ, et al. Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae isolates from neonatal infections in a Nepali hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting. Antimicrob Agents Chemother. 2014;58(12):7347–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Viau RA, Hujer AM, Marshall SH, Perez F, Hujer KM, Briceno DF, et al. “Silent” dissemination of Klebsiella pneumoniae isolates bearing K. pneumoniae carbapenemase in a long-term care facility for children and young adults in Northeast Ohio. Clin Infect Dis. 2012;54(9):1314–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Pannaraj PS, Bard JD, Cerini C, Weissman SJ. Pediatric carbapenem-resistant Enterobacteriaceae in Los Angeles, California, a high-prevalence region in the United States. Pediatr Infect Dis J. 2015;34(1):11–6. Largest and most recent series of pediatric CRE in the United States with information on frequency of carbapenemase production, risk factors, and outcomes. The clinical course of the 5 patients with carbapenemase-producing organisms are summarized in detail.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Little ML, Qin X, Zerr DM, Weissman SJ. Molecular diversity in mechanisms of carbapenem resistance in paediatric Enterobacteriaceae. Int J Antimicrob Agents. 2012;39(1):52–7. A second series of pediatric CRE in the United States which contains information on specific carbapenemases detected as well as a detailed clinical course for each patient.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Colombo S, Scolfaro C, Calitri C, Denina M, Carraro F, De Intinis G, et al. Carbapenemase-producing Enterobacteriaceae (CPE) in the pediatric setting: results from an 18-month survey. Infect Control Hosp Epidemiol. 2014;35(5):599–601. Description of epidemiology, risk factors, and outcomes for 6 Italian patients with carbapenemase-producing Enterobacteriaceae infection.

    Article  PubMed  Google Scholar 

  42. Cendejas E, Gomez-Gil R, Gomez-Sanchez P, Mingorance J. Detection and characterization of Enterobacteriaceae producing metallo-beta-lactamases in a tertiary-care hospital in Spain. Clin Microbiol Infect. 2010;16(2):181–3.

    Article  PubMed  CAS  Google Scholar 

  43. Maltezou HC, Kontopidou F, Katerelos P, Daikos G, Roilides E, Theodoridou M. Infections caused by carbapenem-resistant gram-negative pathogens in hospitalized children. Pediatr Infect Dis J. 2013;32(4):e151–4.

    Article  PubMed  Google Scholar 

  44. Liu Y, Li XY, Wan LG, Jiang WY, Li FQ, Yang JH. Molecular characterization of the bla(KPC-2) gene in clinical isolates of carbapenem-resistant Klebsiella pneumoniae from the pediatric wards of a Chinese hospital. Can J Microbiol. 2012;58(10):1167–73.

    Article  PubMed  CAS  Google Scholar 

  45. Drew RJ, Turton JF, Hill RL, Livermore DM, Woodford N, Paulus S, et al. Emergence of carbapenem-resistant Enterobacteriaceae in a UK paediatric hospital. J Hosp Infect. 2013;84(4):300–4.

    Article  PubMed  CAS  Google Scholar 

  46. Alp E, Percin D, Colakoglu S, Durmaz S, Kurkcu CA, Ekincioglu P, et al. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae in a tertiary university hospital in Turkey. J Hosp Infect. 2013;84(2):178–80.

    Article  PubMed  CAS  Google Scholar 

  47. Saleem AF, Qamar FN, Shahzad H, Qadir M, Zaidi AK. Trends in antibiotic susceptibility and incidence of late-onset Klebsiella pneumoniae neonatal sepsis over a six-year period in a neonatal intensive care unit in Karachi, Pakistan. Int J Infect Dis. 2013;17(11):e961–5.

    Article  PubMed  CAS  Google Scholar 

  48. Green DA, Srinivas N, Watz N, Tenover FC, Amieva M, Banaei N. A pediatric case of New Delhi metallo-beta-lactamase-1-producing Enterobacteriaceae in the United States. Pediatr Infect Dis J. 2013;32(11):1291–4.

    Article  PubMed  Google Scholar 

  49. Dara JS, Chen L, Levi MH, Kreiswirth BN, Pellett Madan R. Microbiological and genetic characterization of carbapenem-resistant isolates from pediatric patients. J Pediatr Infect Dis Soc. 2014;3(1):e10–4.

    Article  Google Scholar 

  50. Qamar MU, Nahid F, Walsh TR, Kamran R, Zahra R. Prevalence and clinical burden of NDM-1 positive infections in pediatric and neonatal patients in Pakistan. Pediatr Infect Dis J. 2015;34(4):452–4.

    Article  PubMed  Google Scholar 

  51. Datta S, Roy S, Chatterjee S, Saha A, Sen B, Pal T, et al. A five-year experience of carbapenem resistance in Enterobacteriaceae causing neonatal septicaemia: predominance of NDM-1. PLoS One. 2014;9(11):e112101. Reports on a recent CRE outbreak in an Indian NICU involving a large number of neonates. Risk factors for CRE infection and mortality are discussed.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Dirajlal-Fargo S, DeBiasi R, Campos J, Song X. Carbapenem-resistant Enterobacteriaceae in pediatric patients: epidemiology and risk factors. Infect Control Hosp Epidemiol. 2014;35(4):447–9. Large series describing clinical characteristics of patients with CRE. The authors also performed a case control study showing increased risk of CRE colonization with prior antibiotic exposure.

    Article  PubMed  Google Scholar 

  53. Ulu-Kilic A, Alp E, Percin D, Cevahir F, Altay-Kurkcu C, Ozturk A, et al. Risk factors for carbapenem resistant Klebsiella pneumoniae rectal colonization in pediatric units. J Infect Dev Ctries. 2014;8(10):1361–4. Describes frequency of and risk factors for rectal colonization with CRE in pediatric patients.

    Article  PubMed  Google Scholar 

  54. Dudley MN, Ambrose PG, Bhavnani SM, Craig WA, Ferraro MJ, Jones RN. Background and rationale for revised clinical and laboratory standards institute interpretive criteria (breakpoints) for Enterobacteriaceae and Pseudomonas aeruginosa: I.Cephalosporins and Aztreonam. Clin Infect Dis. 2013;56(9):1301–9.

    Article  PubMed  CAS  Google Scholar 

  55. Doern CD, Dunne Jr WM, Burnham CA. Detection of Klebsiella pneumoniae carbapenemase (KPC) production in non-Klebsiella pneumoniae Enterobacteriaceae isolates by use of the Phoenix, Vitek 2, and disk diffusion methods. J Clin Microbiol. 2011;49(3):1143–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yahav D, Lador A, Paul M, Leibovici L. Efficacy and safety of tigecycline: a systematic review and meta-analysis. J Antimicrob Chemother. 2011;66(9):1963–71.

    Article  PubMed  CAS  Google Scholar 

  57. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother. 2011;55(7):3284–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hrabak J, Chudackova E, Papagiannitsis CC. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect. 2014;20(9):839–53. Concise review of methods for laboratory detection of CRE and carbapenemase production.

    Article  PubMed  CAS  Google Scholar 

  59. Girlich D, Poirel L, Nordmann P. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J Clin Microbiol. 2012;50(2):477–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Carvalhaes CG, Picao RC, Nicoletti AG, Xavier DE, Gales AC. Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results. J Antimicrob Chemother. 2010;65(2):249–51.

    Article  PubMed  CAS  Google Scholar 

  61. Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2012;18(9):1503–7.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dortet L, Poirel L, Nordmann P. Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test. Antimicrob Agents Chemother. 2012;56(12):6437–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Vasoo S, Cunningham SA, Kohner PC, Simner PJ, Mandrekar JN, Lolans K, et al. Comparison of a novel, rapid chromogenic biochemical assay, the Carba NP test, with the modified Hodge test for detection of carbapenemase-producing gram-negative bacilli. J Clin Microbiol. 2013;51(9):3097–101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Tijet N, Boyd D, Patel SN, Mulvey MR, Melano RG. Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2013;57(9):4578–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Dortet L, Agathine A, Naas T, Cuzon G, Poirel L, Nordmann P. Evaluation of the RAPIDEC(R) CARBA NP, the rapid CARB screen(R) and the Carba NP test for biochemical detection of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2015.

  66. van der Zee A, Roorda L, Bosman G, Fluit AC, Hermans M, Smits PH, et al. Multi-centre evaluation of real-time multiplex PCR for detection of carbapenemase genes OXA-48, VIM, IMP, NDM and KPC. BMC Infect Dis. 2014;14:27.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stuart JC, Voets G, Scharringa J, Fluit AC, Leverstein-Van Hall MA. Detection of carbapenemase-producing Enterobacteriaceae with a commercial DNA microarray. J Med Microbiol. 2012;61(Pt 6):809–12.

    Article  PubMed  CAS  Google Scholar 

  68. Naas T, Cuzon G, Bogaerts P, Glupczynski Y, Nordmann P. Evaluation of a DNA microarray (Check-MDR CT102) for rapid detection of TEM, SHV, and CTX-M extended-spectrum beta-lactamases and of KPC, OXA-48, VIM, IMP, and NDM-1 carbapenemases. J Clin Microbiol. 2011;49(4):1608–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hrabak J, Studentova V, Walkova R, Zemlickova H, Jakubu V, Chudackova E, et al. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2012;50(7):2441–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Lasserre C, De Saint Martin L, Cuzon G, Bogaerts P, Lamar E, Glupczynski Y, et al. Efficient detection of carbapenemase activity in Enterobacteriaceae by matrix-assisted laser desorption ionization-time of flight mass spectrometry in less than 30 minutes. J Clin Microbiol. 2015;53(7):2163–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Centers for Disease Control and Prevention. Laboratory protocol for detection of carbapenem-resistant or carbapenemase-producing, Klebsiella spp. and E. coli from rectal swabs. 2015. http://www.cdc.gov/HAI/pdfs/labSettings/Klebsiella_or_Ecoli.pdf. Accessed 8 Aug 2015.

  72. Vasoo S, Lolans K, Li H, Prabaker K, Hayden MK. Comparison of the CHROMagar KPC, Remel Spectra CRE, and a direct ertapenem disk method for the detection of KPC-producing Enterobacteriaceae from perirectal swabs. Diagn Microbiol Infect Dis. 2014;78(4):356–9.

    Article  PubMed  CAS  Google Scholar 

  73. Adler A, Navon-Venezia S, Moran-Gilad J, Marcos E, Schwartz D, Carmeli Y. Laboratory and clinical evaluation of screening agar plates for detection of carbapenem-resistant Enterobacteriaceae from surveillance rectal swabs. J Clin Microbiol. 2011;49(6):2239–42.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Singh K, Mangold KA, Wyant K, Schora DM, Voss B, Kaul KL, et al. Rectal screening for Klebsiella pneumoniae carbapenemases: comparison of real-time PCR and culture using two selective screening agar plates. J Clin Microbiol. 2012;50(8):2596–600.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Morrill HJ, Pogue JM, Kaye KS, LaPlante KL. Treatment options for carbapenem-resistant Enterobacteriaceae infections. Open Forum Infect Dis. 2015;2(2):ofv050. The most recent review synthesizing available literature for various treatment options for CRE infections in adult patients.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Daikos GL, Tsaousi S, Tzouvelekis LS, Anyfantis I, Psichogiou M, Argyropoulou A, et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 2014;58(4):2322–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Qureshi ZA, Paterson DL, Potoski BA, Kilayko MC, Sandovsky G, Sordillo E, et al. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob Agents Chemother. 2012;56(4):2108–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis. 2012;55(7):943–50.

    Article  PubMed  CAS  Google Scholar 

  79. Roberts JA, Kirkpatrick CM, Roberts MS, Robertson TA, Dalley AJ, Lipman J. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother. 2009;64(1):142–50.

    Article  PubMed  CAS  Google Scholar 

  80. Patel TS, Nagel JL. Clinical outcomes of Enterobacteriaceae infections stratified by carbapenem MICs. J Clin Microbiol. 2015;53(1):201–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Hsu AJ, Tamma PD. Treatment of multidrug-resistant gram-negative infections in children. Clin Infect Dis. 2014;58(10):1439–48. This article summarizes available pediatric data for treatment of CRE infections.

    Article  PubMed  Google Scholar 

  82. Tamma PD, Jenh AM, Milstone AM. Prolonged beta-lactam infusion for gram-negative infections. Pediatr Infect Dis J. 2011;30(4):336–7.

    Article  PubMed  Google Scholar 

  83. Petrosillo N, Giannella M, Lewis R, Viale P. Treatment of carbapenem-resistant Klebsiella pneumoniae: the state of the art. Expert Rev Anti-Infect Ther. 2013;11(2):159–77.

    Article  PubMed  CAS  Google Scholar 

  84. Sader HS, Castanheira M, Flamm RK, Mendes RE, Farrell DJ, Jones RN. Tigecycline activity tested against carbapenem-resistant Enterobacteriaceae from 18 European nations: results from the SENTRY surveillance program (2010–2013). Diagn Microbiol Infect Dis. 2015.

  85. Akajagbor DS, Wilson SL, Shere-Wolfe KD, Dakum P, Charurat ME, Gilliam BL. Higher incidence of acute kidney injury with intravenous colistimethate sodium compared with polymyxin B in critically ill patients at a tertiary care medical center. Clin Infect Dis. 2013;57(9):1300–3.

    Article  PubMed  CAS  Google Scholar 

  86. Balkan II, Aygun G, Aydin S, Mutcali SI, Kara Z, Kuskucu M, et al. Blood stream infections due to OXA-48-like carbapenemase-producing Enterobacteriaceae: treatment and survival. Int J Infect Dis. 2014;26:51–6.

    Article  PubMed  CAS  Google Scholar 

  87. Tamma PD, Newland JG, Pannaraj PS, Metjian TA, Banerjee R, Gerber JS, et al. The use of intravenous colistin among children in the United States: results from a multicenter, case series. Pediatr Infect Dis J. 2013;32(1):17–22.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kapoor K, Jajoo M, Dublish S, Dabas V, Gupta S, Manchanda V. Intravenous colistin for multidrug-resistant gram-negative infections in critically ill pediatric patients. Pediatr Crit Care Med. 2013;14(6):e268–72.

    Article  PubMed  Google Scholar 

  89. Paksu MS, Paksu S, Karadag A, Sensoy G, Asilioglu N, Yildizdas D, et al. Old agent, new experience: colistin use in the paediatric intensive care unit—a multicentre study. Int J Antimicrob Agents. 2012;40(2):140–4.

    Article  PubMed  CAS  Google Scholar 

  90. Sader HS, Farrell DJ, Flamm RK, Jones RN. Variation in potency and spectrum of tigecycline activity against bacterial strains from U.S. medical centers since its approval for clinical use (2006 to 2012). Antimicrob Agents Chemother. 2014;58(4):2274–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Sbrana F, Malacarne P, Viaggi B, Costanzo S, Leonetti P, Leonildi A, et al. Carbapenem-sparing antibiotic regimens for infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in intensive care unit. Clin Infect Dis. 2013;56(5):697–700.

    Article  PubMed  CAS  Google Scholar 

  92. Kaewpoowat Q, Ostrosky-Zeichner L. Tigecycline : a critical safety review. Expert Opin Drug Saf. 2015;14(2):335–42.

    Article  PubMed  CAS  Google Scholar 

  93. Purdy J, Jouve S, Yan JL, Balter I, Dartois N, Cooper CA, et al. Pharmacokinetics and safety profile of tigecycline in children aged 8 to 11 years with selected serious infections: a multicenter, open-label, ascending-dose study. Clin Ther. 2012;34(2):496–507.e1.

    Article  PubMed  CAS  Google Scholar 

  94. Michalopoulos A, Virtzili S, Rafailidis P, Chalevelakis G, Damala M, Falagas ME. Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: a prospective evaluation. Clin Microbiol Infect. 2010;16(2):184–6.

    Article  PubMed  CAS  Google Scholar 

  95. Karageorgopoulos DE, Wang R, Yu XH, Falagas ME. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in gram-negative pathogens. J Antimicrob Chemother. 2012;67(2):255–68.

    Article  PubMed  CAS  Google Scholar 

  96. Traunmuller F, Popovic M, Konz KH, Vavken P, Leithner A, Joukhadar C. A reappraisal of current dosing strategies for intravenous fosfomycin in children and neonates. Clin Pharmacokinet. 2011;50(8):493–503.

    Article  PubMed  Google Scholar 

  97. Lucasti C, Popescu I, Ramesh MK, Lipka J, Sable C. Comparative study of the efficacy and safety of ceftazidime/avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infections in hospitalized adults: results of a randomized, double-blind, phase II trial. J Antimicrob Chemother. 2013;68(5):1183–92.

    Article  PubMed  CAS  Google Scholar 

  98. Vazquez JA, Gonzalez Patzan LD, Stricklin D, Duttaroy DD, Kreidly Z, Lipka J, et al. Efficacy and safety of ceftazidime-avibactam versus imipenem-cilastatin in the treatment of complicated urinary tract infections, including acute pyelonephritis, in hospitalized adults: results of a prospective, investigator-blinded, randomized study. Curr Med Res Opin. 2012;28(12):1921–31.

    Article  PubMed  CAS  Google Scholar 

  99. Castanheira M, Mills JC, Costello SE, Jones RN, Sader HS. Ceftazidime-avibactam activity tested against Enterobacteriaceae isolates from U.S. hospitals (2011 to 2013) and characterization of beta-lactamase-producing strains. Antimicrob Agents Chemother. 2015;59(6):3509–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Castanheira M, Farrell SE, Krause KM, Jones RN, Sader HS. Contemporary diversity of beta-lactamases among Enterobacteriaceae in the nine U.S. census regions and ceftazidime-avibactam activity tested against isolates producing the most prevalent beta-lactamase groups. Antimicrob Agents Chemother. 2014;58(2):833–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Safety and tolerability of ceftazidime-avibactam for pediatric patients with suspected or confirmed infections. 2015. https://clinicaltrials.gov/ct2/show/NCT01893346. Accessed 14 Aug 2015.

  102. Evaluation of safety, pharmacokinetics and efficacy of CAZ-AVI with metronidazole in children aged 3 months to 18 years old with complicated intra-abdominal infections (cIAIs). 2015. https://clinicaltrials.gov/ct2/show/NCT02475733. Accessed 20 Oct 2015.

  103. Evaluation of safety, pharmacokinetics and efficacy of ceftazidime and avibactam (CAZ-AVI) compared with cefepime in children from 3 months to less than 18 years of age with complicated urinary tract infections (cUTIs). 2015. https://clinicaltrials.gov/ct2/show/NCT02497781. Accessed 20 Oct 2015.

  104. Boucher HW, Talbot GH, Benjamin Jr DK, Bradley J, Guidos RJ, Jones RN, et al. 10 × ′20 progress—development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(12):1685–94.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schwaber MJ, Lev B, Israeli A, Solter E, Smollan G, Rubinovitch B, et al. Containment of a country-wide outbreak of carbapenem-resistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin Infect Dis. 2011;52(7):848–55.

    Article  PubMed  Google Scholar 

  106. Kochar S, Sheard T, Sharma R, Hui A, Tolentino E, Allen G, et al. Success of an infection control program to reduce the spread of carbapenem-resistant Klebsiella pneumoniae. Infect Control Hosp Epidemiol. 2009;30(5):447–52.

    Article  PubMed  Google Scholar 

  107. Munoz-Price LS, Hayden MK, Lolans K, Won S, Calvert K, Lin M, et al. Successful control of an outbreak of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae at a long-term acute care hospital. Infect Control Hosp Epidemiol. 2010;31(4):341–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (T32HD060550 to K.C. and K01-AI103028 to J.H.H.) and the Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases, Division of Infectious Diseases of The Johns Hopkins University School of Medicine

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kathleen Chiotos, Jennifer H. Han or Pranita D. Tamma.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Funding

The funding agency had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript.

Additional information

This article is part of the Topical Collection on Pediatric Infectious Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiotos, K., Han, J.H. & Tamma, P.D. Carbapenem-Resistant Enterobacteriaceae Infections in Children. Curr Infect Dis Rep 18, 2 (2016). https://doi.org/10.1007/s11908-015-0510-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-015-0510-9

Keywords

Navigation