Advertisement

Empiric Antimicrobial Therapy in Severe Sepsis and Septic Shock: Optimizing Pathogen Clearance

  • Stephen Y. Liang
  • Anand KumarEmail author
Sepsis and ICU (L Napolitano, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Sepsis and ICU

Abstract

Mortality and morbidity in severe sepsis and septic shock remain high despite significant advances in critical care. Efforts to improve outcome in septic conditions have focused on targeted, quantitative resuscitation strategies utilizing intravenous fluids, vasopressors, inotropes, and blood transfusions to correct disease-associated circulatory dysfunction driven by immune-mediated systemic inflammation. This review explores an alternate paradigm of septic shock in which microbial burden is identified as the key driver of mortality and progression to irreversible shock. We propose that clinical outcomes in severe sepsis and septic shock hinge upon the optimized selection, dosing, and delivery of highly potent antimicrobial therapy.

Keywords

Septic shock Sepsis Infection Antimicrobial Antibiotic Pharmacokinetics Combination therapy Survival 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Stephen Liang is the recipient of a KM1 Comparative Effectiveness Research Career Development Award (KM1CA156708-01) and received support through the Clinical and Translational Science Award (CTSA) program (UL1RR024992) of the National Center for Advancing Translational Sciences (NCATS) as well as the Barnes-Jewish Patient Safety and Quality Career Development Program, which is funded by the Foundation for Barnes-Jewish Hospital. Anand Kumar holds investigator-initiated research grants for the study of septic shock from Astellas and Pfizer. He also holds additional unrelated research grants from GSK and Roche.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Gaieski DF, Edwards JM, Kallan MJ, Carr BG. Benchmarking the incidence and mortality of severe sepsis in the United States. Crit Care Med. 2013;41:1167–74.PubMedGoogle Scholar
  2. 2.
    Walkey AJ, Wiener RS, Lindenauer PK. Utilization patterns and outcomes associated with central venous catheter in septic shock: a population-based study. Crit Care Med. 2013;41:1450–7.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009;136:1237–48.PubMedGoogle Scholar
  4. 4.
    Quenot JP, Binquet C, Kara F, Martinet O, Ganster F, Navellou JC, et al. The epidemiology of septic shock in French intensive care units: the prospective multicenter cohort EPISS study. Crit Care. 2013;17:R65.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA. 2014;311:1308–16.PubMedGoogle Scholar
  6. 6.
    Zhou J, Qian C, Zhao M, Yu X, Kang Y, Ma X, et al. Epidemiology and outcome of severe sepsis and septic shock in intensive care units in mainland China. PLoS One. 2014;9:e107181.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Ranieri VM, Thompson BT, Barie PS, Dhainaut JF, Douglas IS, Finfer S, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366:2055–64.PubMedGoogle Scholar
  8. 8.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.PubMedGoogle Scholar
  9. 9.
    The ARISE Investigators and the ANZICS Clinical Trials Group. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506.Google Scholar
  10. 10.
    The ProCESS Investigators. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93.PubMedCentralGoogle Scholar
  11. 11.•
    Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al. Trial of early, goal-directedresuscitation for septic shock. N Engl J Med. 2015;372:1301–11. Above 3 references are very important papers showing that early goal directed therapy based on central venous saturation does not improve survival in a broad group of patients with septic shock in current therapeutic environment.PubMedGoogle Scholar
  12. 12.
    Kumar A, Haery C, Paladugu B, Kumar A, Symeoneides S, Taiberg L, et al. The duration of hypotension before the initiation of antibiotic treatment is a critical determinant of survival in a murine model of Escherichia coli septic shock: association with serum lactate and inflammatory cytokine levels. J Infect Dis. 2006;193:251–8.PubMedGoogle Scholar
  13. 13.
    Ovstebo R, Brandtzaeg P, Brusletto B, Haug KB, Lande K, Hoiby EA, et al. Use of robotized DNA isolation and real-time PCR to quantify and identify close correlation between levels of Neisseria meningitidis DNA and lipopolysaccharides in plasma and cerebrospinal fluid from patients with systemic meningococcal disease. J Clin Microbiol. 2004;42:2980–7.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Ziegler I, Josefson P, Olcen P, Molling P, Stralin K. Quantitative data from the SeptiFast real-time PCR is associated with disease severity in patients with sepsis. BMC Infect Dis. 2014;14:155.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Khatib R, Riederer K, Saeed S, Johnson LB, Fakih MG, Sharma M, et al. Time to positivity in Staphylococcus aureus bacteremia: possible correlation with the source and outcome of infection. Clin Infect Dis. 2005;41:594–8.PubMedGoogle Scholar
  16. 16.
    Marra AR, Edmond MB, Forbes BA, Wenzel RP, Bearman GM. Time to blood culture positivity as a predictor of clinical outcome of Staphylococcus aureus bloodstream infection. J Clin Microbiol. 2006;44:1342–6.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Peralta G, Roiz MP, Sanchez MB, Garrido JC, Ceballos B, Rodriguez-Lera MJ, et al. Time-to-positivity in patients with Escherichia coli bacteraemia. Clin Microbiol Infect. 2007;13:1077–82.PubMedGoogle Scholar
  18. 18.
    Liao CH, Lai CC, Hsu MS, Huang YT, Chu FY, Hsu HS, et al. Correlation between time to positivity of blood cultures with clinical presentation and outcomes in patients with Klebsiella pneumoniae bacteraemia: prospective cohort study. Clin Microbiol Infect. 2009;15:1119–25.PubMedGoogle Scholar
  19. 19.
    Palmer HR, Palavecino EL, Johnson JW, Ohl CA, Williamson JC. Clinical and microbiological implications of time-to-positivity of blood cultures in patients with Gram-negative bacilli bacteremia. Eur J Clin Microbiol Infect Dis. 2013;32:955–9.PubMedGoogle Scholar
  20. 20.
    Willmann M, Kuebart I, Vogel W, Flesch I, Markert U, Marschal M, et al. Time to positivity as prognostic tool in patients with Pseudomonas aeruginosa bloodstream infection. J Infect. 2013;67:416–23.PubMedGoogle Scholar
  21. 21.
    Torgersen C, Moser P, Luckner G, Mayr V, Jochberger S, Hasibeder WR, et al. Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis. Anesth Analg. 2009;108:1841–7.PubMedGoogle Scholar
  22. 22.
    Wiggers HC, Ingraham RC. Hemorrhagic shock; definition and criteria for its diagnosis. J Clin Invest. 1946;25:30–6.PubMedCentralGoogle Scholar
  23. 23.
    Kumar A. An alternate pathophysiologic paradigm of sepsis and septic shock: implications for optimizing antimicrobial therapy. Virulence. 2014;5:80–97.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Kellum JA, Kong L, Fink MP, Weissfeld LA, Yealy DM, Pinsky MR, et al. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study. Arch Intern Med. 2007;167:1655–63.PubMedGoogle Scholar
  25. 25.
    Simon PM, Delude RL, Lee M, Kong L, Guzik LJ, Huang DT, et al. Duration and magnitude of hypotension and monocyte deactivation in patients with community-acquired pneumonia. Shock. 2011;36:553–9.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Fjell CD, Thair S, Hsu JL, Walley KR, Russell JA, Boyd J. Cytokines and signaling molecules predict clinical outcomes in sepsis. PLoS One. 2013;8:e79207.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41:580–637.PubMedGoogle Scholar
  28. 28.
    Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest. 2000;118:146–55.PubMedGoogle Scholar
  29. 29.
    Valles J, Rello J, Ochagavia A, Garnacho J, Alcala MA. Community-acquired bloodstream infection in critically ill adult patients: impact of shock and inappropriate antibiotic therapy on survival. Chest. 2003;123:1615–24.PubMedGoogle Scholar
  30. 30.
    Micek ST, Welch EC, Khan J, Pervez M, Doherty JA, Reichley RM, et al. Empiric combination antibiotic therapy is associated with improved outcome against sepsis due to Gram-negative bacteria: a retrospective analysis. Antimicrob Agents Chemother. 2010;54:1742–8.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Paul M, Shani V, Muchtar E, Kariv G, Robenshtok E, Leibovici L. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother. 2010;54:4851–63.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Lodise TP, McKinnon PS, Swiderski L, Rybak MJ. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis. 2003;36:1418–23.PubMedGoogle Scholar
  33. 33.
    Khatib R, Saeed S, Sharma M, Riederer K, Fakih MG, Johnson LB. Impact of initial antibiotic choice and delayed appropriate treatment on the outcome of Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis. 2006;25:181–5.PubMedGoogle Scholar
  34. 34.
    Kang CI, Kim SH, Kim HB, Park SW, Choe YJ, Oh MD, et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis. 2003;37:745–51.PubMedGoogle Scholar
  35. 35.
    Lodise Jr TP, Patel N, Kwa A, Graves J, Furuno JP, Graffunder E, et al. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother. 2007;51:3510–5.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Erbay A, Idil A, Gozel MG, Mumcuoglu I, Balaban N. Impact of early appropriate antimicrobial therapy on survival in Acinetobacter baumannii bloodstream infections. Int J Antimicrob Agents. 2009;34:575–9.PubMedGoogle Scholar
  37. 37.
    Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother. 2005;49:3640–5.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Garey KW, Rege M, Pai MP, Mingo DE, Suda KJ, Turpin RS, et al. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis. 2006;43:25–31.PubMedGoogle Scholar
  39. 39.
    Hsu DI, Nguyen M, Nguyen L, Law A, Wong-Beringer A. A multicentre study to evaluate the impact of timing of caspofungin administration on outcomes of invasive candidiasis in non-immunocompromised adult patients. J Antimicrob Chemother. 2010;65:1765–70.PubMedGoogle Scholar
  40. 40.
    Taur Y, Cohen N, Dubnow S, Paskovaty A, Seo SK. Effect of antifungal therapy timing on mortality in cancer patients with candidemia. Antimicrob Agents Chemother. 2010;54:184–90.PubMedCentralPubMedGoogle Scholar
  41. 41.•
    Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–96. A classic paper showing that mortality increases with hourly delays of antimicrobial therapy of septic shock.PubMedGoogle Scholar
  42. 42.
    Ferrer R, Artigas A, Suarez D, Palencia E, Levy MM, Arenzana A, et al. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med. 2009;180:861–6.PubMedGoogle Scholar
  43. 43.
    Varpula M, Karlsson S, Parviainen I, Ruokonen E, Pettila V, Finnsepsis Study G. Community-acquired septic shock: early management and outcome in a nationwide study in Finland. Acta Anaesthesiol Scand. 2007;51:1320–6.PubMedGoogle Scholar
  44. 44.
    Subramanian S, Yilmaz M, Rehman A, Hubmayr RD, Afessa B, Gajic O. Liberal vs. conservative vasopressor use to maintain mean arterial blood pressure during resuscitation of septic shock: an observational study. Intensive Care Med. 2008;34:157–62.PubMedGoogle Scholar
  45. 45.
    Gaieski DF, Mikkelsen ME, Band RA, Pines JM, Massone R, Furia FF, et al. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit Care Med. 2010;38:1045–53.PubMedGoogle Scholar
  46. 46.
    Ferrer R, Martin-Loeches I, Phillips G, Osborn TM, Townsend S, Dellinger RP, et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med. 2014;42:1749–55.PubMedGoogle Scholar
  47. 47.
    Patel GP, Simon D, Scheetz M, Crank CW, Lodise T, Patel N. The effect of time to antifungal therapy on mortality in Candidemia associated septic shock. Am J Ther. 2009;16:508–11.PubMedGoogle Scholar
  48. 48.
    Ulldemolins M, Rello J. The relevance of drug volume of distribution in antibiotic dosing. Curr Pharm Biotechnol. 2011;12:1996–2001.PubMedGoogle Scholar
  49. 49.
    Varghese JM, Roberts JA, Lipman J. Antimicrobial pharmacokinetic and pharmacodynamic issues in the critically ill with severe sepsis and septic shock. Crit Care Clin. 2011;27:19–34.PubMedGoogle Scholar
  50. 50.
    Pea F. Plasma pharmacokinetics of antimicrobial agents in critically ill patients. Curr Clin Pharmacol. 2013;8:5–12.PubMedGoogle Scholar
  51. 51.
    Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J. The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet. 2011;50:99–110.PubMedGoogle Scholar
  52. 52.
    Taccone FS, Laterre PF, Dugernier T, Spapen H, Delattre I, Wittebole X, et al. Insufficient beta-lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care. 2010;14:R126.PubMedCentralPubMedGoogle Scholar
  53. 53.
    De Waele JJ, Lipman J, Akova M, Bassetti M, Dimopoulos G, Kaukonen M, et al. Risk factors for target non-attainment during empirical treatment with beta-lactam antibiotics in critically ill patients. Intensive Care Med. 2014;40:1340–51.PubMedGoogle Scholar
  54. 54.
    Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58:1072–83.PubMedGoogle Scholar
  55. 55.
    Moore RD, Smith CR, Lietman PS. The association of aminoglycoside plasma levels with mortality in patients with gram-negative bacteremia. J Infect Dis. 1984;149:443–8.PubMedGoogle Scholar
  56. 56.
    Chelluri L, Jastremski MS. Inadequacy of standard aminoglycoside loading doses in acutely ill patients. Crit Care Med. 1987;15:1143–5.PubMedGoogle Scholar
  57. 57.
    Rea RS, Capitano B, Bies R, Bigos KL, Smith R, Lee H. Suboptimal aminoglycoside dosing in critically ill patients. Ther Drug Monit. 2008;30:674–81.PubMedGoogle Scholar
  58. 58.
    Taccone FS, Laterre PF, Spapen H, Dugernier T, Delattre I, Layeux B, et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care. 2010;14:R53.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Wang JT, Fang CT, Chen YC, Chang SC. Necessity of a loading dose when using vancomycin in critically ill patients. J Antimicrob Chemother. 2001;47:246.PubMedGoogle Scholar
  60. 60.
    Ocampos-Martinez E, Penaccini L, Scolletta S, Abdelhadii A, Devigili A, Cianferoni S, et al. Determinants of early inadequate vancomycin concentrations during continuous infusion in septic patients. Int J Antimicrob Agents. 2012;39:332–7.PubMedGoogle Scholar
  61. 61.
    Blot S, Koulenti D, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. Does contemporary vancomycin dosing achieve therapeutic targets in a heterogeneous clinical cohort of critically ill patients? Data from the multinational DALI study. Crit Care. 2014;18:R99.PubMedCentralPubMedGoogle Scholar
  62. 62.
    Pletz MW, Bloos F, Burkhardt O, Brunkhorst FM, Bode-Boger SM, Martens-Lobenhoffer J, et al. Pharmacokinetics of moxifloxacin in patients with severe sepsis or septic shock. Intensive Care Med. 2010;36:979–83.PubMedGoogle Scholar
  63. 63.
    van Zanten AR, Polderman KH, van Geijlswijk IM, van der Meer GY, Schouten MA, Girbes AR. Ciprofloxacin pharmacokinetics in critically ill patients: a prospective cohort study. J Crit Care. 2008;23:422–30.PubMedGoogle Scholar
  64. 64.
    Plachouras D, Karvanen M, Friberg LE, Papadomichelakis E, Antoniadou A, Tsangaris I, et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob Agents Chemother. 2009;53:3430–6.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Mohamed AF, Karaiskos I, Plachouras D, Karvanen M, Pontikis K, Jansson B, et al. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob Agents Chemother. 2012;56:4241–9.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Oparaoji EC, Siram S, Shoheiber O, Cornwell 3rd EE, Mezghebe HM. Appropriateness of a 4 mg/kg gentamicin or tobramycin loading dose in post-operative septic shock patients. J Clin Pharm Ther. 1998;23:185–90.PubMedGoogle Scholar
  67. 67.
    Shorr AF, Khashab MM, Xiang JX, Tennenberg AM, Kahn JB. Levofloxacin 750-mg for 5 days for the treatment of hospitalized Fine Risk Class III/IV community-acquired pneumonia patients. Respir Med. 2006;100:2129–36.PubMedGoogle Scholar
  68. 68.
    Rhodes NJ, MacVane SH, Kuti JL, Scheetz MH. Impact of loading doses on the time to adequate predicted beta-lactam concentrations in prolonged and continuous infusion dosing schemes. Clin Infect Dis. 2014;59:905–7.PubMedGoogle Scholar
  69. 69.
    Anderson ET, Young LS, Hewitt WL. Antimicrobial synergism in the therapy of gram-negative rod bacteremia. Chemotherapy. 1978;24:45–54.PubMedGoogle Scholar
  70. 70.
    De Jongh CA, Joshi JH, Thompson BW, Newman KA, Finley RS, Moody MR, et al. A double beta-lactam combination versus an aminoglycoside-containing regimen as empiric antibiotic therapy for febrile granulocytopenic cancer patients. Am J Med. 1986;80:101–11.PubMedGoogle Scholar
  71. 71.
    Giamarellou H. Aminoglycosides plus beta-lactams against gram-negative organisms. Evaluation of in vitro synergy and chemical interactions. Am J Med. 1986;80:126–37.PubMedGoogle Scholar
  72. 72.
    Kluge RM, Standiford HC, Tatem B, Young VM, Greene WH, Schimpff SC, et al. Comparative activity of tobramycin, amikacin, and gentamicin alone and with carbenicillin against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1974;6:442–6.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Comber KR, Basker MJ, Osborne CD, Sutherland R. Synergy between ticarcillin and tobramycin against Pseudomonas aeruginosa and Enterobacteriaceae in vitro and in vivo. Antimicrob Agents Chemother. 1977;11:956–64.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Archer G, Fekety Jr FR. Experimental endocarditis due to Pseudomonas aeruginosa. II. Therapy with carbenicillin and gentamicin. J Infect Dis. 1977;136:327–35.PubMedGoogle Scholar
  75. 75.
    Yoshikawa TT, Shibata SA. In vitro antibacterial activity of amikacin and ticarcillin, alone and in combination, against Pseudomonas aerurginosa. Antimicrob Agents Chemother. 1978;13:997–9.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Pohlman JK, Knapp CC, Ludwig MD, Washington JA. Timed killing kinetic studies of the interaction between ciprofloxacin and beta-lactams against gram-negative bacilli. Diagn Microbiol Infect Dis. 1996;26:29–33.PubMedGoogle Scholar
  77. 77.
    Gimeno C, Borja J, Navarro D, Valdes L, Garcia-Barbal J, Garcia-de-Lomas J. In vitro interaction between ofloxacin and cefotaxime against gram-positive and gram-negative bacteria involved in serious infections. Chemotherapy. 1998;44:94–8.PubMedGoogle Scholar
  78. 78.
    Gradelski E, Kolek B, Bonner DP, Valera L, Minassian B, Fung-Tomc J. Activity of gatifloxacin and ciprofloxacin in combination with other antimicrobial agents. Int J Antimicrob Agents. 2001;17:103–7.PubMedGoogle Scholar
  79. 79.
    Pankuch GA, Lin G, Seifert H, Appelbaum PC. Activity of meropenem with and without ciprofloxacin and colistin against Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrob Agents Chemother. 2008;52:333–6.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Marcus R, Paul M, Elphick H, Leibovici L. Clinical implications of beta-lactam-aminoglycoside synergism: systematic review of randomised trials. Int J Antimicrob Agents. 2011;37:491–503.PubMedGoogle Scholar
  81. 81.
    Paul M, Dickstein Y, Schlesinger A, Grozinsky-Glasberg S, Soares-Weiser K, Leibovici L. Beta-lactam versus beta-lactam-aminoglycoside combination therapy in cancer patients with neutropenia. Cochrane Database Syst Rev. 2013;6, CD003038.PubMedGoogle Scholar
  82. 82.
    Paul M, Lador A, Grozinsky-Glasberg S, Leibovici L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev. 2014;1, CD003344.PubMedGoogle Scholar
  83. 83.•
    Kumar A, Safdar N, Kethireddy S, Chateau D. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med. 2010;38:1651–64. A useful study reconciling divergent findings regarding the potential utility of combination therapy in septic shock.Google Scholar
  84. 84.
    Kumar A, Zarychanski R, Light B, Parrillo J, Maki D, Simon D, et al. Early combination antibiotic therapy yields improved survival compared with monotherapy in septic shock: a propensity-matched analysis. Crit Care Med. 2010;38:1773–85.PubMedGoogle Scholar
  85. 85.
    Martinez JA, Cobos-Trigueros N, Soriano A, Almela M, Ortega M, Marco F, et al. Influence of empiric therapy with a beta-lactam alone or combined with an aminoglycoside on prognosis of bacteremia due to gram-negative microorganisms. Antimicrob Agents Chemother. 2010;54:3590–6.PubMedCentralPubMedGoogle Scholar
  86. 86.
    Delannoy PY, Boussekey N, Devos P, Alfandari S, Turbelin C, Chiche A, et al. Impact of combination therapy with aminoglycosides on the outcome of ICU-acquired bacteraemias. Eur J Clin Microbiol Infect Dis. 2012;31:2293–9.PubMedGoogle Scholar
  87. 87.
    Diaz-Martin A, Martinez-Gonzalez ML, Ferrer R, Ortiz-Leyba C, Piacentini E, Lopez-Pueyo MJ, et al. Antibiotic prescription patterns in the empiric therapy of severe sepsis: combination of antimicrobials with different mechanisms of action reduces mortality. Crit Care. 2012;16:R223.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Brunkhorst FM, Oppert M, Marx G, Bloos F, Ludewig K, Putensen C, et al. Effect of empirical treatment with moxifloxacin and meropenem vs meropenem on sepsis-related organ dysfunction in patients with severe sepsis: a randomized trial. JAMA. 2012;307:2390–9.PubMedGoogle Scholar
  89. 89.
    Schentag JJ, Smith IL, Swanson DJ, DeAngelis C, Fracasso JE, Vari A, et al. Role for dual individualization with cefmenoxime. Am J Med. 1984;77:43–50.PubMedGoogle Scholar
  90. 90.
    McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T > MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31:345–51.PubMedGoogle Scholar
  91. 91.
    Crandon JL, Bulik CC, Kuti JL, Nicolau DP. Clinical pharmacodynamics of cefepime in patients infected with Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54:1111–6.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Rafati MR, Rouini MR, Mojtahedzadeh M, Najafi A, Tavakoli H, Gholami K, et al. Clinical efficacy of continuous infusion of piperacillin compared with intermittent dosing in septic critically ill patients. Int J Antimicrob Agents. 2006;28:122–7.PubMedGoogle Scholar
  93. 93.
    Chytra I, Stepan M, Benes J, Pelnar P, Zidkova A, Bergerova T, et al. Clinical and microbiological efficacy of continuous versus intermittent application of meropenem in critically ill patients: a randomized open-label controlled trial. Crit Care. 2012;16:R113.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Roberts JA, Boots R, Rickard CM, Thomas P, Quinn J, Roberts DM, et al. Is continuous infusion ceftriaxone better than once-a-day dosing in intensive care? A randomized controlled pilot study. J Antimicrob Chemother. 2007;59:285–91.PubMedGoogle Scholar
  95. 95.
    Dulhunty JM, Roberts JA, Davis JS, Webb SA, Bellomo R, Gomersall C, et al. Continuous infusion of beta-lactam antibiotics in severe sepsis: a multicenter double-blind, randomized controlled trial. Clin Infect Dis. 2013;56:236–44.PubMedGoogle Scholar
  96. 96.
    Lodise Jr TP, Lomaestro B, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis. 2007;44:357–63.PubMedGoogle Scholar
  97. 97.
    Yost RJ, Cappelletty DM, group RS. The Retrospective Cohort of Extended-Infusion Piperacillin-Tazobactam (RECEIPT) study: a multicenter study. Pharmacotherapy. 2011;31:767–75.PubMedGoogle Scholar
  98. 98.
    Arnold HM, Hollands JM, Skrupky LP, Smith JR, Juang PH, Hampton NB, et al. Prolonged infusion antibiotics for suspected gram-negative infections in the ICU: a before-after study. Ann Pharmacother. 2013;47:170–80.PubMedGoogle Scholar
  99. 99.
    Bauer KA, West JE, O’Brien JM, Goff DA. Extended-infusion cefepime reduces mortality in patients with Pseudomonas aeruginosa infections. Antimicrob Agents Chemother. 2013;57:2907–12.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Cutro SR, Holzman R, Dubrovskaya Y, Chen XJ, Ahuja T, Scipione MR, et al. Extended-Infusion versus standard-infusion piperacillin-tazobactam for sepsis syndromes at a tertiary medical center. Antimicrob Agents Chemother. 2014;58:4470–5.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Falagas ME, Tansarli GS, Ikawa K, Vardakas KZ. Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. Clin Infect Dis. 2013;56:272–82.PubMedGoogle Scholar
  102. 102.
    Chant C, Leung A, Friedrich JO. Optimal dosing of antibiotics in critically ill patients by using continuous/extended infusions: a systematic review and meta-analysis. Crit Care. 2013;17:R279.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Shiu J, Wang E, Tejani AM, Wasdell M. Continuous versus intermittent infusions of antibiotics for the treatment of severe acute infections. Cochrane Database Syst Rev. 2013;3, CD008481.PubMedGoogle Scholar
  104. 104.
    Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother. 1993;37:1073–81.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Zelenitsky SA, Ariano RE. Support for higher ciprofloxacin AUC 24/MIC targets in treating Enterobacteriaceae bloodstream infection. J Antimicrob Chemother. 2010;65:1725–32.PubMedGoogle Scholar
  106. 106.
    Preston SL, Drusano GL, Berman AL, Fowler CL, Chow AT, Dornseif B, et al. Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials. JAMA. 1998;279:125–9.PubMedGoogle Scholar
  107. 107.
    Drusano GL, Preston SL, Fowler C, Corrado M, Weisinger B, Kahn J. Relationship between fluoroquinolone area under the curve: minimum inhibitory concentration ratio and the probability of eradication of the infecting pathogen, in patients with nosocomial pneumonia. J Infect Dis. 2004;189:1590–7.PubMedGoogle Scholar
  108. 108.
    Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155:93–9.PubMedGoogle Scholar
  109. 109.
    Drusano GL, Louie A. Optimization of aminoglycoside therapy. Antimicrob Agents Chemother. 2011;55:2528–31.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Boyer A, Gruson D, Bouchet S, Clouzeau B, Hoang-Nam B, Vargas F, et al. Aminoglycosides in septic shock: an overview, with specific consideration given to their nephrotoxic risk. Drug Saf. 2013;36:217–30.PubMedGoogle Scholar
  111. 111.
    Kullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clin Infect Dis. 2011;52:975–81.PubMedGoogle Scholar
  112. 112.
    Holmes NE, Turnidge JD, Munckhof WJ, Robinson JO, Korman TM, O’Sullivan MV, et al. Vancomycin AUC/MIC ratio and 30-day mortality in patients with Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2013;57:1654–63.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Jung Y, Song KH, Cho J, Kim HS, Kim NH, Kim TS, et al. Area under the concentration-time curve to minimum inhibitory concentration ratio as a predictor of vancomycin treatment outcome in methicillin-resistant Staphylococcus aureus bacteraemia. Int J Antimicrob Agents. 2014;43:179–83.PubMedGoogle Scholar
  114. 114.
    Lodise TP, Drusano GL, Zasowski E, Dihmess A, Lazariu V, Cosler L, et al. Vancomycin exposure in patients with methicillin-resistant Staphylococcus aureus bloodstream infections: how much is enough? Clin Infect Dis. 2014;59:666–75.PubMedGoogle Scholar
  115. 115.
    Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet. 2004;43:925–42.PubMedGoogle Scholar
  116. 116.
    Zelenitsky S, Rubinstein E, Ariano R, Iacovides H, Dodek P, Mirzanejad Y, et al. Vancomycin pharmacodynamics and survival in patients with methicillin-resistant Staphylococcus aureus-associated septic shock. Int J Antimicrob Agents. 2013;41:255–60.PubMedGoogle Scholar
  117. 117.
    Finberg RW, Moellering RC, Tally FP, Craig WA, Pankey GA, Dellinger EP, et al. The importance of bactericidal drugs: future directions in infectious disease. Clin Infect Dis. 2004;39:1314–20.PubMedGoogle Scholar
  118. 118.
    Pankey GA, Sabath LD. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis. 2004;38:864–70.PubMedGoogle Scholar
  119. 119.
    Nemeth J, Oesch G, Kuster SP. Bacteriostatic versus bactericidal antibiotics for patients with serious bacterial infections: systematic review and meta-analysis. J Antimicrob Chemother. 2015;70:382–95.PubMedGoogle Scholar
  120. 120.
    Sculier JP, Klastersky J. Significance of serum bactericidal activity in gram-negative bacillary bacteremia in patients with and without granulocytopenia. Am J Med. 1984;76:429–35.PubMedGoogle Scholar
  121. 121.
    Weinstein MP, Stratton CW, Ackley A, Hawley HB, Robinson PA, Fisher BD, et al. Multicenter collaborative evaluation of a standardized serum bactericidal test as a prognostic indicator in infective endocarditis. Am J Med. 1985;78:262–9.PubMedGoogle Scholar
  122. 122.
    Stryjewski ME, Szczech LA, Benjamin Jr DK, Inrig JK, Kanafani ZA, Engemann JJ, et al. Use of vancomycin or first-generation cephalosporins for the treatment of hemodialysis-dependent patients with methicillin-susceptible Staphylococcus aureus bacteremia. Clin Infect Dis. 2007;44:190–6.PubMedGoogle Scholar
  123. 123.
    Kim SH, Kim KH, Kim HB, Kim NJ, Kim EC, Oh MD, et al. Outcome of vancomycin treatment in patients with methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2008;52:192–7.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Schweizer ML, Furuno JP, Harris AD, Johnson JK, Shardell MD, McGregor JC, et al. Comparative effectiveness of nafcillin or cefazolin versus vancomycin in methicillin-susceptible Staphylococcus aureus bacteremia. BMC Infect Dis. 2011;11:279.PubMedCentralPubMedGoogle Scholar
  125. 125.
    Rubinstein E, Cammarata S, Oliphant T, Wunderink R, Linezolid Nosocomial Pneumonia Study G. Linezolid (PNU-100766) versus vancomycin in the treatment of hospitalized patients with nosocomial pneumonia: a randomized, double-blind, multicenter study. Clin Infect Dis. 2001;32:402–12.PubMedGoogle Scholar
  126. 126.
    Prasad P, Sun J, Danner RL, Natanson C. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin Infect Dis. 2012;54:1699–709.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Reboli AC, Rotstein C, Pappas PG, Chapman SW, Kett DH, Kumar D, et al. Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med. 2007;356:2472–82.PubMedGoogle Scholar
  128. 128.
    Duke T, Poka H, Dale F, Michael A, Mgone J, Wal T. Chloramphenicol versus benzylpenicillin and gentamicin for the treatment of severe pneumonia in children in Papua New Guinea: a randomised trial. Lancet. 2002;359:474–80.PubMedGoogle Scholar
  129. 129.
    Byl B, Clevenbergh P, Jacobs F, Struelens MJ, Zech F, Kentos A, et al. Impact of infectious diseases specialists and microbiological data on the appropriateness of antimicrobial therapy for bacteremia. Clin Infect Dis. 1999;29:60–6. discussion 7–8.Google Scholar
  130. 130.
    Raineri E, Pan A, Mondello P, Acquarolo A, Candiani A, Crema L. Role of the infectious diseases specialist consultant on the appropriateness of antimicrobial therapy prescription in an intensive care unit. Am J Infect Control. 2008;36:283–90.PubMedGoogle Scholar
  131. 131.
    Kerremans JJ, Verbrugh HA, Vos MC. Frequency of microbiologically correct antibiotic therapy increased by infectious disease consultations and microbiological results. J Clin Microbiol. 2012;50:2066–8.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Honda H, Krauss MJ, Jones JC, Olsen MA, Warren DK. The value of infectious diseases consultation in Staphylococcus aureus bacteremia. Am J Med. 2010;123:631–7.PubMedCentralPubMedGoogle Scholar
  133. 133.
    Robinson JO, Pozzi-Langhi S, Phillips M, Pearson JC, Christiansen KJ, Coombs GW, et al. Formal infectious diseases consultation is associated with decreased mortality in Staphylococcus aureus bacteraemia. Eur J Clin Microbiol Infect Dis. 2012;31:2421–8.PubMedGoogle Scholar
  134. 134.
    Tissot F, Calandra T, Prod’hom G, Taffe P, Zanetti G, Greub G, et al. Mandatory infectious diseases consultation for MRSA bacteremia is associated with reduced mortality. J Infect. 2014;69:226–34.PubMedGoogle Scholar
  135. 135.
    MacLaren R, Bond CA, Martin SJ, Fike D. Clinical and economic outcomes of involving pharmacists in the direct care of critically ill patients with infections. Crit Care Med. 2008;36:3184–9.PubMedGoogle Scholar
  136. 136.
    Jiang SP, Zhu ZY, Ma KF, Zheng X, Lu XY. Impact of pharmacist antimicrobial dosing adjustments in septic patients on continuous renal replacement therapy in an intensive care unit. Scand J Infect Dis. 2013;45:891–9.PubMedGoogle Scholar
  137. 137.
    Singh N, Rogers P, Atwood CW, Wagener MM, Yu VL. Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med. 2000;162:505–11.PubMedGoogle Scholar
  138. 138.
    Kollef MH, Morrow LE, Niederman MS, Leeper KV, Anzueto A, Benz-Scott L, et al. Clinical characteristics and treatment patterns among patients with ventilator-associated pneumonia. Chest. 2006;129:1210–8.PubMedGoogle Scholar
  139. 139.
    Aarts MA, Brun-Buisson C, Cook DJ, Kumar A, Opal S, Rocker G, et al. Antibiotic management of suspected nosocomial ICU-acquired infection: does prolonged empiric therapy improve outcome? Intensive Care Med. 2007;33:1369–78.PubMedGoogle Scholar
  140. 140.
    Joung MK, Lee JA, Moon SY, Cheong HS, Joo EJ, Ha YE, et al. Impact of de-escalation therapy on clinical outcomes for intensive care unit-acquired pneumonia. Crit Care. 2011;15:R79.PubMedCentralPubMedGoogle Scholar
  141. 141.
    Garnacho-Montero J, Gutierrez-Pizarraya A, Escoresca-Ortega A, Corcia-Palomo Y, Fernandez-Delgado E, Herrera-Melero I, et al. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med. 2014;40:32–40.PubMedGoogle Scholar
  142. 142.
    Mokart D, Slehofer G, Lambert J, Sannini A, Chow-Chine L, Brun JP, et al. De-escalation of antimicrobial treatment in neutropenic patients with severe sepsis: results from an observational study. Intensive Care Med. 2014;40:41–9.PubMedGoogle Scholar
  143. 143.
    Leone M, Bechis C, Baumstarck K, Lefrant JY, Albanese J, Jaber S, et al. De-escalation versus continuation of empirical antimicrobial treatment in severe sepsis: a multicenter non-blinded randomized noninferiority trial. Intensive Care Med. 2014;40:1399–408.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Infectious Diseases, Division of Emergency MedicineWashington University School of MedicineSt. LouisUSA
  2. 2.Section of Critical Care Medicine, Section of Infectious Diseases, JJ399dHealth Sciences CentreWinnipegCanada

Personalised recommendations