Advertisement

What Role Does Mycobacterium avium subsp. paratuberculosis Play in Crohn’s Disease?

  • Horacio BachEmail author
Intra-abdominal Infections, Hepatitis, and Gastroenteritis (T Steiner, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Intra-abdominal Infections, Hepatitis, and Gastroenteritis

Abstract

Crohn’s disease (CD) is a chronic, debilitating inflammatory bowel disease with no etiological agent yet identified. Studies have demonstrated that the bacterium Mycobacterium avium subsp. paratuberculosis (MAP) is present in a high percentage of CD patients. Although MAP has been isolated from human specimens, current techniques fail to show the presence of MAP in 100 % of tissues or biopsies obtained from CD patient lesions, and thus MAP cannot meet Koch’s postulate as the etiological agent of CD. In this report, the effect of genetic and immune factors as well as the presence of MAP as a potential environmental factor is analyzed.

Keywords

Inflammatory bowel disease Crohn’s disease Johne’s disease Macrophages Mycobacterium avium ssp. paratuberculosis Serological test Genetic factors Virulence factors Signal transduction Therapy Tyrosine phosphatase Tyrosine kinase Phagosome-lysosome fusion 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Horacio Bach has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

References

  1. 1.
    Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104:13780–5.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3:521–33.CrossRefPubMedGoogle Scholar
  3. 3.
    Tlaskalová-Hogenová H, Stepánková R, Hudcovic T, Tucková L, Cukrowska B, Lodinová-Zádníková R, et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett. 2004;93:97–108.CrossRefPubMedGoogle Scholar
  4. 4.
    Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell. 2006;124:823–35.CrossRefPubMedGoogle Scholar
  5. 5.
    Macpherson A, Khoo UY, Forgacs I, Philpott-Howard J, Bjarnason I. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut. 1996;38:365–75.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Cong Y, Weaver CT, Lazenby A, Elson CO. Bacterial-Reactive T Regulatory Cells Inhibit Pathogenic Immune Responses to the Enteric Flora. J Immunol. 2002;169:6112–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology. 2004;126:1620–33.CrossRefPubMedGoogle Scholar
  8. 8.
    Casellas F, Borruel N, Papo M, Guarner F, Antolín M, Videla S, et al. Antiinflammatory effects of enterically coated amoxicillin-clavulanic acid in active ulcerative colitis. Inflamm Bowel Dis. 1998;4:1–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Greenstein RJ. Is Crohn’s disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne’s disease. Lancet Infect Dis. 2003;3:507–14.CrossRefPubMedGoogle Scholar
  10. 10.
    Grant IR. Zoonotic potential of Mycobacterium avium ssp. paratuberculosis: the current position. J Appl Microbiol. 2005;98:1282–93.CrossRefPubMedGoogle Scholar
  11. 11.
    Feller M, Huwiler K, Stephan R, Altpeter E, Shang A, Furrer H, et al. Mycobacterium avium subspecies paratuberculosis and Crohn’s disease: a systematic review and meta-analysis. Lancet Infect Dis. 2007;7:607–13.CrossRefPubMedGoogle Scholar
  12. 12.
    McFadden JJ, Butcher PD, Chiodini R, Hermon-Taylor J. Crohn’s disease-isolated mycobacteria are identical to Mycobacterium paratuberculosis, as determined by DNA probes that distinguish between mycobacterial species. J Clin Microbiol. 1987;25:796–801.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Collins MT. Update on paratuberculosis: 1. Epidemiology of Johne’s disease and the biology of Mycobacterium paratuberculosis. Ir Vet J. 2003;56:565–74.Google Scholar
  14. 14.
    Chacon O, Bermudez LE, Barletta RG. Johne’s disease, inflammatory bowel disease, and Mycobacterium paratuberculosis. Annu Rev Microbiol. 2004;58:329–63.CrossRefPubMedGoogle Scholar
  15. 15.
    Godfroid J, Boelaert F, Heier A, Clavareau C, Wellemans V, Desmecht M, et al. First evidence of Johne’s disease in farmed red deer (Cervus elaphus) in Belgium. Vet Microbiol. 2000;77:283–90.CrossRefPubMedGoogle Scholar
  16. 16.
    Greig A, Stevenson K, Henderson D, Perez V, Hughes V, Pavlik I, et al. Epidemiological study of paratuberculosis in wild rabbits in Scotland. J Clin Microbiol. 1999;37:1746–51.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Beard PM, Daniels MJ, Henderson D, Pirie A, Rudge K, Buxton D, et al. Paratuberculosis infection of nonruminant wildlife in Scotland. J Clin Microbiol. 2001;39:1517–21.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Sohal JS, Singh SV, Tyagi P, Subhodh S, Singh PK, Singh AV, et al. Immunology of mycobacterial infections: with special reference to Mycobacterium avium subspecies paratuberculosis. Immunobiology. 2008;213:585–98.CrossRefPubMedGoogle Scholar
  19. 19.
    Coussens PM. Mycobacterium paratuberculosis and the bovine immune system. Anim Health Res Rev. 2001;2:141–62.PubMedGoogle Scholar
  20. 20.
    Chiodini RJ, Van Kruiningen HJ, Thayer WR, Coutu JA. Spheroplastic phase of mycobacteria isolated from patients with Crohn’s disease. J Clin Microbiol. 1986;24:357–63.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Whittington RJ, Marshall DJ, Nicholls PJ, Marsh IB, Reddacliff LA. Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment. Appl Environ Microbiol. 2004;70:2989–3004.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Grant IR, Ball HJ, Rowe MT. Incidence of Mycobacterium paratuberculosis in bulk raw and commercially pasteurized cows’ milk from approved dairy processing establishments in the United Kingdom. Appl Env Microbiol. 2002;68:2428–35.CrossRefGoogle Scholar
  23. 23.
    Corti S, Stephan R. Detection of Mycobacterium avium subspecies paratuberculosis specific IS900 insertion sequences in bulk-tank milk samples obtained from different regions throughout Switzerland. BMC Microbiol. 2002;2:15. doi: 10.1186/1471-2180-2-15.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Keswani J, Frank JF. Thermal inactivation of Mycobacterium paratuberculosis in milk. J Food Prot. 1998;61:974–8.PubMedGoogle Scholar
  25. 25.
    Gao A, Mutharia L, Chen S, Rahn K, Odumeru J. Effect of pasteurization on survival of Mycobacterium paratuberculosis in milk. J Dairy Sci. 2002;85:3198–205.CrossRefPubMedGoogle Scholar
  26. 26.
    Donaghy JA, Totton NL, Rowe MT. Persistence of Mycobacterium paratuberculosis during manufacture and ripening of cheddar cheese. Appl Environ Microbiol. 2004;70:4899–905.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Whan LB, Grant IR, Ball HJ, Scott R, Rowe MT. Bactericidal effect of chlorine on Mycobacterium paratuberculosis in drinking water. Lett Appl Microbiol. 2001;33:227–31.CrossRefPubMedGoogle Scholar
  28. 28.
    Economou M, Pappas G. New global map of Crohn’s disease: Genetic, environmental, and socioeconomic correlations. Inflamm Bowel Dis. 2008;14:709–20.CrossRefPubMedGoogle Scholar
  29. 29.
    Lettre G, Rioux JD. Autoimmune diseases: insights from genome-wide association studies. Hum Mol Genet. 2008;17:R116–21.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Lidar M, Langevitz P, Barzilai O, Ram M, Porat-Katz B-S, Bizzaro N, et al. Infectious serologies and autoantibodies in inflammatory bowel disease. Ann N Y Acad Sci. 2009;1173:640–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Marks DJB, Harbord MWN, MacAllister R, Rahman FZ, Young J, Al-Lazikani B, et al. Defective acute inflammation in Crohn’s disease: a clinical investigation. Lancet. 2006;367:668–78.CrossRefPubMedGoogle Scholar
  32. 32.
    Round JL, Mazmanian SK. The gut microbiome shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Bonen DK, Cho JH. The genetics of inflammatory bowel disease. Gastroenterology. 2003;124:521–36.CrossRefPubMedGoogle Scholar
  34. 34.
    Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.CrossRefPubMedGoogle Scholar
  36. 36.
    Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2 implications for Crohn's disease. J Biol Chem. 2003;278:5509–12.CrossRefPubMedGoogle Scholar
  37. 37.
    Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278:8869–72.CrossRefPubMedGoogle Scholar
  38. 38.
    Cuthbert AP, Fisher SA, Mirza MM, King K, Hampe J, Croucher PJP, et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology. 2002;122:867–74.CrossRefPubMedGoogle Scholar
  39. 39.
    Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nuñez G, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 2005;307:731–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Maeda S, Hsu L-C, Liu H, Bankston LA, Iimura M, Kagnoff MF, et al. Nod2 mutation in Crohn’s disease potentiates NF-kappa B activity and IL-1 beta processing. Science. 2005;307:734–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Hirano A, Yamazaki K, Umeno J, Ashikawa K, Aoki M, Matsumoto T, et al. Association study of 71 European Crohn’s disease susceptibility loci in a Japanese population. Inflamm Bowel Dis. 2013;19:526–33. doi: 10.1097/MIB.0b013e31828075e7.CrossRefPubMedGoogle Scholar
  42. 42.
    Parkes M, Barrett JC, Prescott N, Tremelling M, Anderson CA, Fisher SA, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn disease susceptibility. Nat Genet. 2007;39:830–2.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Naser SA, Hulten K, Shafran I, Graham DY, El-Zaatari FA. Specific seroreactivity of Crohn’s disease patients against p35 and p36 antigens of M. avium subsp. paratuberculosis. Vet Microbiol. 2000;77:497–504.CrossRefPubMedGoogle Scholar
  44. 44.
    Bernstein CN, Blanchard JF, Rawsthorne P, Collins MT. Population-based case control study of seroprevalence of Mycobacterium paratuberculosis in patients with Crohn’s disease and ulcerative colitis. J Clin Microbiol. 2004;42:1129–35.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Collins MT, Lisby G, Moser C, Chicks D, Christensen S, Reichelderfer M, et al. Results of multiple diagnostic tests for Mycobacterium avium subsp. paratuberculosis in patients with inflammatory bowel disease and in controls. J Clin Microbiol. 2000;38:4373–81.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Scharl M, Rogler G. Microbial sensing by the intestinal epithelium in the pathogenesis of inflammatory bowel disease. Int J Inflamm. 2010;2010:e671258.CrossRefGoogle Scholar
  47. 47.
    Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet. 2007;369:1627–40.CrossRefPubMedGoogle Scholar
  48. 48.
    Ferwerda G, Kullberg BJ, de Jong DJ, Girardin SE, Langenberg DML, van Crevel R, et al. Mycobacterium paratuberculosis is recognized by Toll-like receptors and NOD2. J Leukoc Biol. 2007;82:1011–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Clancy R, Ren Z, Turton J, Pang G, Wettstein A. Molecular evidence for Mycobacterium avium subspecies paratuberculosis (MAP) in Crohn’s disease correlates with enhanced TNF-alpha secretion. Dig Liver Dis. 2007;39:445–51.CrossRefPubMedGoogle Scholar
  50. 50.
    Nakase H, Tamaki H, Matsuura M, Chiba T, Okazaki K. Involvement of Mycobacterium avium subspecies paratuberculosis in TNF-alpha production from macrophage: possible link between MAP and immune response in Crohn’s disease. Inflamm Bowel Dis. 2011;17:E140–2.CrossRefPubMedGoogle Scholar
  51. 51.
    Bach H, Rosenfeld G, Bressler B. Treatment of Crohn’s disease patients with infliximab is detrimental for the survival of Mycobacterium avium ssp. paratuberculosis within macrophages and shows a remarkable decrease in the immunogenicity of mycobacterial proteins. J Crohns Colitis. 2012;6:628–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Dotan I, Allez M, Nakazawa A, Brimnes J, Schulder-Katz M, Mayer L. Intestinal epithelial cells from inflammatory bowel disease patients preferentially stimulate CD4+ T cells to proliferate and secrete interferon-γ. Am J Physiol - Gastrointest Liver Physiol. 2007;292:G1630–40.CrossRefPubMedGoogle Scholar
  53. 53.
    Ostanin DV, Bao J, Koboziev I, Gray L, Robinson-Jackson SA, Kosloski-Davidson M, et al. T cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade. Am J Physiol - Gastrointest Liver Physiol. 2009;296:G135–46.CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Smith AM, Rahman FZ, Hayee B, Graham SJ, Marks DJB, Sewell GW, et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease. J Exp Med. 2009;206:1883–97.CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010;16:90–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Golan L, Livneh-Kol A, Gonen E, Yagel S, Rosenshine I, Shpigel NY. Mycobacterium avium paratuberculosis invades human small-intestinal goblet cells and elicits inflammation. J Infect Dis. 2009;199:350–4.CrossRefPubMedGoogle Scholar
  57. 57.
    Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3:390–407.CrossRefPubMedGoogle Scholar
  58. 58.
    Jones PH, Farver TB, Beaman B, Çetinkaya B, Morgan KL. Crohn’s disease in people exposed to clinical cases of bovine paratuberculosis. Epidemiol Infect. 2006;134:49–56.CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Sartor RB. Does Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease? Gut. 2005;54:896–8.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Sandberg M, Nygard K, Meldal H, Valle PS, Kruse H, Skjerve E. Incidence trend and risk factors for campylobacter infections in humans in Norway. BMC Public Health. 2006;6:179.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL. Epidemiology of Escherichia coli O157:H7 Outbreaks, United States, 1982-2002. Emerg Infect Dis. 2005;11:603–9.CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Chiodini RJ, Van Kruiningen HJ, Merkal RS, Thayer WR, Coutu JA. Characteristics of an unclassified Mycobacterium species isolated from patients with Crohn’s disease. J Clin Microbiol. 1984;20:966–71.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Naser SA, Schwartz D, Shafran I. Isolation of Mycobacterium avium subsp paratuberculosis from breast milk of Crohn’s disease patients. Am J Gastroenterol. 2000;95:1094–5.CrossRefPubMedGoogle Scholar
  64. 64.
    Naser SA, Ghobrial G, Romero C, Valentine JF. Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn’s disease. Lancet. 2004;364:1039–44.CrossRefPubMedGoogle Scholar
  65. 65.
    Autschbach F, Eisold S, Hinz U, Zinser S, Linnebacher M, Giese T, et al. High prevalence of Mycobacterium avium subspecies paratuberculosis IS900 DNA in gut tissues from individuals with Crohn’s disease. Gut. 2005;54:944–9.CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Rowbotham DS, Mapstone NP, Trejdosiewicz LK, Howdle PD, Quirke P. Mycobacterium paratuberculosis DNA not detected in Crohn’s disease tissue by fluorescent polymerase chain reaction. Gut. 1995;37:660–7.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Clarkston WK, Presti ME, Petersen PF, Zachary PE, Fan WX, Leonardi CL, et al. Role of Mycobacterium paratuberculosis in Crohn’s disease: a prospective, controlled study using polymerase chain reaction. Dis Colon Rectum. 1998;41:195–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Sanderson JD, Moss MT, Tizard ML, Hermon-Taylor J. Mycobacterium paratuberculosis DNA in Crohn’s disease tissue. Gut. 1992;33:890–6.CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Bull TJ, Hermon-Taylor J, Pavlik I, El-Zaatari F, Tizard M. Characterization of IS900 loci in Mycobacterium avium subsp. paratuberculosis and development of multiplex PCR typing. Microbiology. 2000;146:2185–97.PubMedGoogle Scholar
  70. 70.
    Bernstein CN, Nayar G, Hamel A, Blanchard JF. Study of Animal-borne infections in the mucosas of patients with inflammatory bowel disease and population-based controls. J Clin Microbiol. 2003;41:4986–90.CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Tasara T, Stephan R. Development of an F57 sequence-based real-time PCR assay for detection of Mycobacterium avium subsp. paratuberculosis in milk. Appl Environ Microbiol. 2005;71:5957–68.CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Van Schaik G, Schukken YH, Crainiceanu C, Muskens J, VanLeeuwen JA. Prevalence estimates for paratuberculosis adjusted for test variability using Bayesian analysis. Prev Vet Med. 2003;60:281–95.CrossRefPubMedGoogle Scholar
  73. 73.
    Wu C, Livesey M, Schmoller SK, Manning EJB, Steinberg H, Davis WC, et al. Invasion and persistence of Mycobacterium avium subsp. paratuberculosis during early stages of Johne’s disease in calves. Infect Immun. 2007;75:2110–9.CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Keane J, Remold HG, Kornfeld H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol. 2000;164:2016–20.CrossRefPubMedGoogle Scholar
  75. 75.
    Stanley SA, Raghavan S, Hwang WW, Cox JS. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A. 2003;100:13001–6.CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Bach H, Papavinasasundaram KG, Wong D, Hmama Z, Av-Gay Y. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe. 2008;3:316–22.CrossRefPubMedGoogle Scholar
  77. 77.
    Wong D, Bach H, Sun J, Hmama Z, Av-Gay Y. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H + -ATPase to inhibit phagosome acidification. Proc Natl Acad Sci U S A. 2011;108:19371–6.CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Momotani E, Whipple DL, Thiermann AB, Cheville NF. Role of M Cells and Macrophages in the entrance of Mycobacterium paratuberculosis into omdes of leal Peyer’s patches in calves. Vet Pathol Online. 1988;25:131–7.CrossRefGoogle Scholar
  79. 79.
    Pott J, Basler T, Duerr CU, Rohde M, Goethe R, Hornef MW. Internalization-dependent recognition of Mycobacterium avium ssp. paratuberculosis by intestinal epithelial cells. Cell Microbiol. 2009;11:1802–15.CrossRefPubMedGoogle Scholar
  80. 80.
    Bach H, Ko HH, Raizman EA, Attarian R, Cho B, Biet F, et al. Immunogenicity of Mycobacterium avium subsp. paratuberculosis proteins in Crohn’s disease patients. Scand J Gastroenterol. 2011;46:30–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Hamilton HL, Follett DM, Siegfried LM, Czuprynski CJ. Intestinal multiplication of Mycobacterium paratuberculosis in athymic nude gnotobiotic mice. Infect Immun. 1989;57:225–30.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Schorey JS, Holsti MA, Ratliff TL, Allen PM, Brown EJ. Characterization of the fibronectin-attachment protein of Mycobacterium avium reveals a fibronectin-binding motif conserved among mycobacteria. Mol Microbiol. 1996;21:321–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Middleton AM, Chadwick MV, Nicholson AG, Dewar A, Groger RK, Brown EJ, et al. The role of Mycobacterium avium complex fibronectin attachment protein in adherence to the human respiratory mucosa. Mol Microbiol. 2000;38:381–91.CrossRefPubMedGoogle Scholar
  84. 84.
    Secott TE, Lin TL, Wu CC. Fibronectin attachment protein homologue mediates fibronectin binding by Mycobacterium avium subsp. paratuberculosis. Infect Immun. 2001;69:2075–82.CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Kuehnel MP, Goethe R, Habermann A, Mueller E, Rohde M, Griffiths G, et al. Characterization of the intracellular survival of Mycobacterium avium ssp. paratuberculosis: phagosomal pH and fusogenicity in J774 macrophages compared with other mycobacteria. Cell Microbiol. 2001;3:551–66.CrossRefPubMedGoogle Scholar
  86. 86.
    Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science. 1994;263:678–81.CrossRefPubMedGoogle Scholar
  87. 87.
    Bach H, Sun J, Hmama Z, Av-Gay Y. Mycobacterium avium subsp. paratuberculosis PtpA is an endogenous tyrosine phosphatase secreted during infection. Infect Immun. 2006;74:6540–6.CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, et al. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science. 2004;304:1800–4.CrossRefPubMedGoogle Scholar
  89. 89.
    Greenstein RJ, Su L, Haroutunian V, Shahidi A, Brown ST. On the action of methotrexate and 6-mercaptopurine on M. avium subspecies paratuberculosis. PLoS One. 2007;2:e161.CrossRefPubMedCentralPubMedGoogle Scholar
  90. 90.
    Shin SJ, Collins MT. Thiopurine drugs azathioprine and 6-mercaptopurine inhibit Mycobacterium paratuberculosis growth in vitro. Antimicrob Agents Chemother. 2008;52:418–26.CrossRefPubMedCentralPubMedGoogle Scholar
  91. 91.
    Greenstein RJ, Su L, Juste RA, Brown ST. On the action of cyclosporine A, rapamycin and tacrolimus on M. avium including subspecies paratuberculosis. PLoS One. 2008;3:e2496.CrossRefPubMedCentralPubMedGoogle Scholar
  92. 92.
    Greenstein RJ, Su L, Brown ST. On the effect of thalidomide on Mycobacterium avium subspecies paratuberculosis in culture. Int J Infect Dis. 2009;13:e254–63.CrossRefPubMedGoogle Scholar
  93. 93.
    Gui GP, Thomas PR, Tizard ML, Lake J, Sanderson JD, Hermon-Taylor J. Two-year-outcomes analysis of Crohn’s disease treated with rifabutin and macrolide antibiotics. J Antimicrob Chemother. 1997;39:393–400.CrossRefPubMedGoogle Scholar
  94. 94.
    Shafran I, Kugler L, El-Zaatari F. a. K, Naser SA, Sandoval J. Open clinical trial of rifabutin and clarithromycin therapy in Crohn’s disease. Dig Liver Dis. 2002;34:22–8.CrossRefPubMedGoogle Scholar
  95. 95.
    Xia A, Stempak JM, Grist J, Bressler B, Silverberg MS, Bach H. Effect of inflammatory bowel disease therapies on immunogenicity of Mycobacterium paratuberculosis proteins. Scand J Gastroenterol. 2014;49:157–63.CrossRefPubMedGoogle Scholar
  96. 96.
    Larsen AB, Miller JM. Effect of dexamethasone on Mycobacterium paratuberculosis infection in hamsters. Am J Vet Res. 1978;39:1866–7.PubMedGoogle Scholar
  97. 97.
    Li L, Bannantine JP, Zhang Q, Amonsin A, May BJ, Alt D, et al. The complete genome sequence of Mycobacterium avium subspecies paratuberculosis. Proc Natl Acad Sci U S A. 2005;102:12344–9.CrossRefPubMedCentralPubMedGoogle Scholar
  98. 98.
    Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, et al. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A. 2007;104:1947–52.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverCanada

Personalised recommendations