Skip to main content
Log in

Biomarkers for Community-Acquired Pneumonia in the Emergency Department

  • Respiratory Infections (F Arnold, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Community-acquired pneumonia is one of the most common reasons for emergency department (ED) visits in children and adults. Despite its prevalence, there are many challenges to proper diagnosis and management of pneumonia. There is no accurate and timely etiologic gold standard to differentiate bacterial from viral disease, and there are limitations with precise risk stratification of patients to ensure appropriate site-of-care decisions. Clinical factors obtained by history and physical examination have limited the ability to diagnose pneumonia etiology and severity. Biomarkers offer information about the host response to infection and pathogen activity within the host that can serve to augment clinical features in decision-making. As science and technology progress, novel biomarkers offer great potential in aiding critical decisions for patients with pneumonia. This review summarizes existing knowledge about biomarkers of host response and pathogen activity, in addition to briefly reviewing emerging biomarkers using novel technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Zhou F, Kyaw MH, Shefer A, Winston CA, Nuorti JP. Health care utilization for pneumonia in young children after routine pneumococcal conjugate vaccine use in the United States. Arch Pediatr Adolesc Med. 2007;161:1162–8.

    Article  PubMed  Google Scholar 

  2. Lode HM. Managing community-acquired pneumonia: a European perspective. Respir Med. 2007;101:1864–73.

    Article  PubMed  Google Scholar 

  3. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis Off Publ Inf Dis Soc Am. 2007;44 Suppl 2:S27–72. Evidence-based consensus guidelines for the management of community-acquired pneumonia in adults.

    Article  CAS  Google Scholar 

  4. Bradley JS, Byington CL, Shah SS, et al. The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin Inf Dis Off Publ Inf Dis Soc Am. 2011;53:e25–76. Evidence-based consensus guidelines for the management of community-acquired pneumonia in children.

    Article  Google Scholar 

  5. Florin TA, French B, Zorc JJ, Alpern ER, Shah SS. Variation in emergency department diagnostic testing and disposition outcomes in pneumonia. Pediatrics. 2013;132:237–44.

    Article  PubMed  Google Scholar 

  6. Neuman MI, Shah SS, Shapiro DJ, Hersh AL. Emergency department management of childhood pneumonia in the United States prior to publication of national guidelines. Acad Emerg Med Off J Soc Acad Emerg Med. 2013;20:240–6.

    Article  Google Scholar 

  7. Neuman MI, Graham D, Bachur R. Variation in the use of chest radiography for pneumonia in pediatric emergency departments. Pediatr Emerg Care. 2011;27:606–10.

    Article  PubMed  Google Scholar 

  8. Dedier J, Singer DE, Chang Y, Moore M, Atlas SJ. Processes of care, illness severity, and outcomes in the management of community-acquired pneumonia at academic hospitals. Arch Intern Med. 2001;161:2099–104.

    Article  CAS  PubMed  Google Scholar 

  9. Fine MJ, Auble TE, Yealy DM, et al. A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med. 1997;336:243–50.

    Article  CAS  PubMed  Google Scholar 

  10. Lim WS, van der Eerden MM, Laing R, et al. Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax. 2003;58:377–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS. 2010;5:463–6.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Schutzle H, Forster J, Superti-Furga A, Berner R. Is serum procalcitonin a reliable diagnostic marker in children with acute respiratory tract infections? A retrospective analysis. Eur J Pediatr. 2009;168:1117–24.

    Article  PubMed  Google Scholar 

  13. Toikka P, Irjala K, Juven T, et al. Serum procalcitonin, C-reactive protein and interleukin-6 for distinguishing bacterial and viral pneumonia in children. Pediatr Infect Dis J. 2000;19:598–602.

    Article  CAS  PubMed  Google Scholar 

  14. Lynch T, Bialy L, Kellner JD, et al. A systematic review on the diagnosis of pediatric bacterial pneumonia: when gold is bronze. PLoS One. 2010;5:e11989.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Van den Bruel A, Thompson MJ, Haj-Hassan T, et al. Diagnostic value of laboratory tests in identifying serious infections in febrile children: systematic review. BMJ. 2011;342:d3082.

    Article  PubMed  Google Scholar 

  16. Ballin A, Osadchy A, Klivitsky A, Dalal I, Lishner M. Age-related leukocyte and cytokine patterns in community-acquired bronchopneumonia. Isr Med Assoc J IMAJ. 2006;8:388–90.

    CAS  Google Scholar 

  17. Don M, Valent F, Korppi M, Canciani M. Differentiation of bacterial and viral community-acquired pneumonia in children. Pediatr Int Off J Jpn Pediatr Soc. 2009;51:91–6.

    Article  Google Scholar 

  18. Elemraid MA, Rushton SP, Thomas MF, Spencer DA, Gennery AR, Clark JE. Utility of inflammatory markers in predicting the aetiology of pneumonia in children. Diagn Microbiol Infect Dis. 2014;79:458–62.

    Article  CAS  PubMed  Google Scholar 

  19. Hoshina T, Nanishi E, Kanno S, Nishio H, Kusuhara K, Hara T. The utility of biomarkers in differentiating bacterial from non-bacterial lower respiratory tract infection in hospitalized children: difference of the diagnostic performance between acute pneumonia and bronchitis. J Inf Chemother Off J Jpn Soc Chemother. 2014;20(10):616–20.

    Google Scholar 

  20. Moulin F, Raymond J, Lorrot M, et al. Procalcitonin in children admitted to hospital with community acquired pneumonia. Arch Dis Child. 2001;84:332–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Summah H, Qu JM. Biomarkers: a definite plus in pneumonia. Mediat Inflamm. 2009;2009:675753.

    Article  Google Scholar 

  22. Virkki R, Juven T, Rikalainen H, Svedstrom E, Mertsola J, Ruuskanen O. Differentiation of bacterial and viral pneumonia in children. Thorax. 2002;57:438–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Pereira JM, Teixeira-Pinto A, Basilio C, Sousa-Dias C, Mergulhao P, Paiva JA. Can we predict pneumococcal bacteremia in patients with severe community-acquired pneumonia? J Crit Care. 2013;28:970–4.

    Article  PubMed  Google Scholar 

  24. Korppi M, Heiskanen-Kosma T, Leinonen M. White blood cells, C-reactive protein and erythrocyte sedimentation rate in pneumococcal pneumonia in children. Eur Respir J. 1997;10:1125–9.

    Article  CAS  PubMed  Google Scholar 

  25. Purcell K, Fergie J. Lack of usefulness of an abnormal white blood cell count for predicting a concurrent serious bacterial infection in infants and young children hospitalized with respiratory syncytial virus lower respiratory tract infection. Pediatr Infect Dis J. 2007;26:311–5.

    Article  PubMed  Google Scholar 

  26. Luna CM. C-reactive protein in pneumonia: let me try again. Chest. 2004;125:1192–5.

    Article  PubMed  Google Scholar 

  27. Bafadhel M, Clark TW, Reid C, et al. Procalcitonin and C-reactive protein in hospitalized adult patients with community-acquired pneumonia or exacerbation of asthma or COPD. Chest. 2011;139:1410–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Flood RG, Badik J, Aronoff SC. The utility of serum C-reactive protein in differentiating bacterial from nonbacterial pneumonia in children: a meta-analysis of 1230 children. Pediatr Infect Dis J. 2008;27:95–9.

    Article  PubMed  Google Scholar 

  29. Heiskanen-Kosma T, Korppi M. Serum C-reactive protein cannot differentiate bacterial and viral aetiology of community-acquired pneumonia in children in primary healthcare settings. Scand J Infect Dis. 2000;32:399–402.

    Article  CAS  PubMed  Google Scholar 

  30. Hedlund J, Hansson LO. Procalcitonin and C-reactive protein levels in community-acquired pneumonia: correlation with etiology and prognosis. Infection. 2000;28:68–73.

    Article  CAS  PubMed  Google Scholar 

  31. Smith RP, Lipworth BJ. C-reactive protein in simple community-acquired pneumonia. Chest. 1995;107:1028–31.

    Article  CAS  PubMed  Google Scholar 

  32. Zhydkov A, Christ-Crain M, Thomann R, et al. Utility of procalcitonin, C-reactive protein and white blood cells alone and in combination for the prediction of clinical outcomes in community-acquired pneumonia. Clin Chem Lab Med CCLM / FESCC 2014. doi:10.1515/cclm-2014-0456.

  33. Hohenthal U, Hurme S, Helenius H, et al. Utility of C-reactive protein in assessing the disease severity and complications of community-acquired pneumonia. Clin Microbiol Infect. 2009;15:1026–32.

    Article  CAS  PubMed  Google Scholar 

  34. Chalmers JD, Singanayagam A, Hill AT. C-reactive protein is an independent predictor of severity in community-acquired pneumonia. Am J Med. 2008;121:219–25.

    Article  CAS  PubMed  Google Scholar 

  35. Bruns AH, Oosterheert JJ, Hak E, Hoepelman AI. Usefulness of consecutive C-reactive protein measurements in follow-up of severe community-acquired pneumonia. Eur Respir J. 2008;32:726–32.

    Article  CAS  PubMed  Google Scholar 

  36. Coelho L, Povoa P, Almeida E, et al. Usefulness of C-reactive protein in monitoring the severe community-acquired pneumonia clinical course. Crit Care. 2007;11:R92.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Hirakata Y, Yanagihara K, Kurihara S, et al. Comparison of usefulness of plasma procalcitonin and C-reactive protein measurements for estimation of severity in adults with community-acquired pneumonia. Diagn Microbiol Infect Dis. 2008;61:170–4.

    Article  CAS  PubMed  Google Scholar 

  38. Brunkhorst FM, Al-Nawas B, Krummenauer F, Forycki ZF, Shah PM. Procalcitonin, C-reactive protein and APACHE II score for risk evaluation in patients with severe pneumonia. Clin Microbiol Infect. 2002;8:93–100.

    Article  CAS  PubMed  Google Scholar 

  39. Le Moullec JM, Jullienne A, Chenais J, et al. The complete sequence of human preprocalcitonin. FEBS Lett. 1984;167:93–7.

    Article  PubMed  Google Scholar 

  40. Becker KL, Nylen ES, White JC, Muller B, Snider Jr RH. Clinical review 167: procalcitonin and the calcitonin gene family of peptides in inflammation, infection, and sepsis: a journey from calcitonin back to its precursors. J Clin Endocrinol Metab. 2004;89:1512–25.

    Article  CAS  PubMed  Google Scholar 

  41. Muller B, Becker KL, Schachinger H, et al. Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Crit Care Med. 2000;28:977–83.

    Article  CAS  PubMed  Google Scholar 

  42. Christ-Crain M, Opal SM. Clinical review: the role of biomarkers in the diagnosis and management of community-acquired pneumonia. Crit Care. 2010;14:203.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Snider Jr RH, Nylen ES, Becker KL. Procalcitonin and its component peptides in systemic inflammation: immunochemical characterization. J Investig Med Off Publ Am Fed Clin Res. 1997;45:552–60.

    Google Scholar 

  44. Muller B, Harbarth S, Stolz D, et al. Diagnostic and prognostic accuracy of clinical and laboratory parameters in community-acquired pneumonia. BMC Infect Dis. 2007;7:10.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Soni NJ, Samson DJ, Galaydick JL, Vats V, Pitrak DL, Aronson N. Procalcitonin-guided antibiotic therapy. Comparative effectiveness review no. 78. (Prepared by the Blue Cross and Blue Shield Association Technology Evaluation Center Evidence-based Practice Center under Contract No. 290-2007-10058-I.) AHRQ Publication No. 12(13)-EHC124-EF. Rockville: Agency for Healthcare Research and Quality; 2012. A systematic review of 18 randomized trials demonstrating decreased antibiotic use in adult patients with community-acquired pneumonia when procalcitonin guidance is used.

  46. Christ-Crain M, Jaccard-Stolz D, Bingisser R, et al. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet. 2004;363:600–7.

    Article  CAS  PubMed  Google Scholar 

  47. Christ-Crain M, Stolz D, Bingisser R, et al. Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia: a randomized trial. Am J Respir Crit Care Med. 2006;174:84–93.

    Article  CAS  PubMed  Google Scholar 

  48. Schuetz P, Christ-Crain M, Thomann R, et al. Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA. 2009;302:1059–66.

    Article  CAS  PubMed  Google Scholar 

  49. Andrijevic I, Matijasevic J, Andrijevic L, Kovacevic T, Zaric B. Interleukin-6 and procalcitonin as biomarkers in mortality prediction of hospitalized patients with community acquired pneumonia. Ann Thorac Med. 2014;9:162–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Jensen JU, Heslet L, Jensen TH, Espersen K, Steffensen P, Tvede M. Procalcitonin increase in early identification of critically ill patients at high risk of mortality. Crit Care Med. 2006;34:2596–602.

    Article  CAS  PubMed  Google Scholar 

  51. Harbarth S, Holeckova K, Froidevaux C, et al. Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med. 2001;164:396–402.

    Article  CAS  PubMed  Google Scholar 

  52. Gendrel D, Bohuon C. Procalcitonin as a marker of bacterial infection. Pediatr Infect Dis J. 2000;19:679–87.

    Article  CAS  PubMed  Google Scholar 

  53. Gomez B, Bressan S, Mintegi S, et al. Diagnostic value of procalcitonin in well-appearing young febrile infants. Pediatrics. 2012;130:815–22. This retrospective study of 1112 well-appearing febrile infants <3 months of age with fever without source demonstrated that procalcitonin performs better than C-reactive protein in identifying infants with invasive bacterial infections and was the best marker to rule out invasive bacterial infection.

    Article  PubMed  Google Scholar 

  54. Yo CH, Hsieh PS, Lee SH, et al. Comparison of the test characteristics of procalcitonin to C-reactive protein and leukocytosis for the detection of serious bacterial infections in children presenting with fever without source: a systematic review and meta-analysis. Ann Emerg Med. 2012;60:591–600.

    Article  PubMed  Google Scholar 

  55. Andreola B, Bressan S, Callegaro S, Liverani A, Plebani M, Da Dalt L. Procalcitonin and C-reactive protein as diagnostic markers of severe bacterial infections in febrile infants and children in the emergency department. Pediatr Infect Dis J. 2007;26:672–7.

    Article  PubMed  Google Scholar 

  56. Leroy S, Fernandez-Lopez A, Nikfar R, et al. Association of procalcitonin with acute pyelonephritis and renal scars in pediatric UTI. Pediatrics. 2013;131:870–9.

    Article  PubMed  Google Scholar 

  57. Unal S, Arslankoylu AE, Kuyucu N, Aslan G, Erdogan S. Procalcitonin is more useful than C-reactive protein in differentiation of fever in patients with sickle cell disease. J Pediatr Hematol Oncol. 2012;34:85–9.

    Article  CAS  PubMed  Google Scholar 

  58. Kasem AJ, Bulloch B, Henry M, Shah K, Dalton H. Procalcitonin as a marker of bacteremia in children with fever and a central venous catheter presenting to the emergency department. Pediatr Emerg Care. 2012;28:1017–21.

    Article  PubMed  Google Scholar 

  59. Prat C, Dominguez J, Rodrigo C, et al. Procalcitonin, C-reactive protein and leukocyte count in children with lower respiratory tract infection. Pediatr Infect Dis J. 2003;22:963–8.

    Article  PubMed  Google Scholar 

  60. Hatzistilianou M, Hitoglou S, Gougoustamou D, et al. Serum procalcitonin, adenosine deaminase and its isoenzymes in the aetiological diagnosis of pneumonia in children. Int J Immunopathol Pharmacol. 2002;15:119–27.

    CAS  PubMed  Google Scholar 

  61. Korppi M, Remes S, Heiskanen-Kosma T. Serum procalcitonin concentrations in bacterial pneumonia in children: a negative result in primary healthcare settings. Pediatr Pulmonol. 2003;35:56–61.

    Article  PubMed  Google Scholar 

  62. Korppi M, Remes S. Serum procalcitonin in pneumococcal pneumonia in children. Eur Respir J. 2001;17:623–7.

    Article  CAS  PubMed  Google Scholar 

  63. Don M, Korppi M, Valent F, Vainionpaa R, Canciani M. Human metapneumovirus pneumonia in children: results of an Italian study and mini-review. Scand J Infect Dis. 2008;40:821–6.

    Article  PubMed  Google Scholar 

  64. Galetto-Lacour A, Alcoba G, Posfay-Barbe KM, et al. Elevated inflammatory markers combined with positive pneumococcal urinary antigen are a good predictor of pneumococcal community-acquired pneumonia in children. Pediatr Infect Dis J. 2013;32:1175–9. This prospective study of pneumonia biomarkers in 75 children included one of the most comprehensive sets of etiology markers, including antibodies against 5 pneumococcal surface proteins, viral serologies, nasopharyngeal cultures and polymerase chain reaction for 13 respiratory viruses, blood pneumococcal PCR, pneumococcal urinary antigen, procalcitonin and C-reactive protein. The study found that PCT and CRP are reliable predictors of pneumococcal pneumonia, and the combination of elevated PCT or CRP with a positive urinary antigen test is a strong predictor of pneumococcal pneumonia.

    Article  PubMed  Google Scholar 

  65. Nascimento-Carvalho CM, Cardoso MR, Barral A, et al. Seasonal patterns of viral and bacterial infections among children hospitalized with community-acquired pneumonia in a tropical region. Scand J Infect Dis. 2010;42:839–44.

    Article  PubMed  Google Scholar 

  66. Esposito S, Tagliabue C, Picciolli I, et al. Procalcitonin measurements for guiding antibiotic treatment in pediatric pneumonia. Respir Med. 2011;105:1939–45.

    Article  PubMed  Google Scholar 

  67. Baer G, Baumann P, Buettcher M, et al. Procalcitonin Guidance to Reduce Antibiotic Treatment of Lower Respiratory Tract Infection in Children and Adolescents (ProPAED): a randomized controlled trial. PLoS One. 2013;8:e68419. The randomized study examined use of procalcitonin guidance in children and found that procalcitonin guidance reduced antibiotic exposure with no difference in impairment of daily activities.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Hirata Y, Mitaka C, Sato K, et al. Increased circulating adrenomedullin, a novel vasodilatory peptide, in sepsis. J Clin Endocrinol Metab. 1996;81:1449–53.

    CAS  PubMed  Google Scholar 

  69. Eto T. A review of the biological properties and clinical implications of adrenomedullin and proadrenomedullin N-terminal 20 peptide (PAMP), hypotensive and vasodilating peptides. Peptides. 2001;22:1693–711.

    Article  CAS  PubMed  Google Scholar 

  70. Struck J, Tao C, Morgenthaler NG, Bergmann A. Identification of an adrenomedullin precursor fragment in plasma of sepsis patients. Peptides. 2004;25:1369–72.

    Article  CAS  PubMed  Google Scholar 

  71. Christ-Crain M, Morgenthaler NG, Stolz D, et al. Pro-adrenomedullin to predict severity and outcome in community-acquired pneumonia [ISRCTN04176397]. Crit Care. 2006;10:R96.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Albrich WC, Dusemund F, Ruegger K, et al. Enhancement of CURB65 score with proadrenomedullin (CURB65-A) for outcome prediction in lower respiratory tract infections: derivation of a clinical algorithm. BMC Inf Dis. 2011;11:112. This study derived a new clinical algorithm that combines the CURB-65 score, an established clinical severity score for adults with CAP, with proadrenomedullin to produce the CURB65-A score. This new score provided better prediction of death and adverse events than the CURB65 score.

    Article  Google Scholar 

  73. Huang DT, Angus DC, Kellum JA, et al. Midregional proadrenomedullin as a prognostic tool in community-acquired pneumonia. Chest. 2009;136:823–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Bello S, Lasierra AB, Minchole E, et al. Prognostic power of proadrenomedullin in community-acquired pneumonia is independent of aetiology. Eur Respir J. 2012;39:1144–55.

    Article  CAS  PubMed  Google Scholar 

  75. Renaud B, Schuetz P, Claessens YE, Labarere J, Albrich W, Mueller B. Proadrenomedullin improves Risk of Early Admission to ICU score for predicting early severe community-acquired pneumonia. Chest. 2012;142:1447–54.

    Article  CAS  PubMed  Google Scholar 

  76. Sarda Sanchez M, Hernandez JC, Hernandez-Bou S, Teruel GC, Rodriguez JV, Cubells CL. Pro-adrenomedullin usefulness in the management of children with community-acquired pneumonia, a preliminar prospective observational study. BMC Res Notes. 2012;5:363.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Musher DM, Montoya R, Wanahita A. Diagnostic value of microscopic examination of Gram-stained sputum and sputum cultures in patients with bacteremic pneumococcal pneumonia. Clin Infect Dis. 2004;39:165–9.

    Article  PubMed  Google Scholar 

  78. Murdoch DR, O’Brien KL, Driscoll AJ, et al. Laboratory methods for determining pneumonia etiology in children. Clin Infect Dis. 2012;54 Suppl 2:S146–52.

    Article  PubMed  Google Scholar 

  79. Laing R, Slater W, Coles C, et al. Community-acquired pneumonia in Christchurch and Waikato 1999–2000: microbiology and epidemiology. N Z Med J. 2001;114:488–92.

    CAS  PubMed  Google Scholar 

  80. Millar EV, Watt JP, Bronsdon MA, et al. Indirect effect of 7-valent pneumococcal conjugate vaccine on pneumococcal colonization among unvaccinated household members. Clin Infect Dis. 2008;47:989–96.

    Article  PubMed  Google Scholar 

  81. Abdullahi O, Nyiro J, Lewa P, Slack M, Scott JA. The descriptive epidemiology of Streptococcus pneumoniae and Haemophilus influenzae nasopharyngeal carriage in children and adults in Kilifi district, Kenya. Pediatr Infect Dis J. 2008;27:59–64.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Myers AL, Hall M, Williams DJ, et al. Prevalence of bacteremia in hospitalized pediatric patients with community-acquired pneumonia. Pediatr Infect Dis J. 2013;32:736–40. This multicenter retrospective study of 658 children with CAP found a bacteremia prevalence rate of 7%, with blood culture results changing antibiotic management in 26-65% of patients. The study concluded that blood cultures are useful in hospitalized children with CAP and should prompt a change to narrow-spectrum antibiotic therapy if positive with sensitive organisms.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Carvalho Mda G, Tondella ML, McCaustland K, et al. Evaluation and improvement of real-time PCR assays targeting lytA, ply, and psaA genes for detection of pneumococcal DNA. J Clin Microbiol. 2007;45:2460–6.

    Article  PubMed  Google Scholar 

  84. Song JY, Eun BW, Nahm MH. Diagnosis of pneumococcal pneumonia: current pitfalls and the way forward. Infect Chemother. 2013;45:351–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Butler JC, Bosshardt SC, Phelan M, et al. Classical and latent class analysis evaluation of sputum polymerase chain reaction and urine antigen testing for diagnosis of pneumococcal pneumonia in adults. J Inf Dis. 2003;187:1416–23.

    Article  Google Scholar 

  86. Michelow IC, Lozano J, Olsen K, et al. Diagnosis of Streptococcus pneumoniae lower respiratory infection in hospitalized children by culture, polymerase chain reaction, serological testing, and urinary antigen detection. Clin Inf Dis Off Publ Inf Dis Soc Am. 2002;34:E1–11.

    Article  Google Scholar 

  87. Stralin K, Tornqvist E, Kaltoft MS, Olcen P, Holmberg H. Etiologic diagnosis of adult bacterial pneumonia by culture and PCR applied to respiratory tract samples. J Clin Microbiol. 2006;44:643–5.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Abdeldaim G, Herrmann B, Molling P, et al. Usefulness of real-time PCR for lytA, ply, and Spn9802 on plasma samples for the diagnosis of pneumococcal pneumonia. Clin Microbiol Inf Off Publ Eur Soc Clin Microbiol Inf Dis. 2010;16:1135–41.

    CAS  Google Scholar 

  89. Azzari C, Cortimiglia M, Moriondo M, et al. Pneumococcal DNA is not detectable in the blood of healthy carrier children by real-time PCR targeting the lytA gene. J Med Microbiol. 2011;60:710–4.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Michelow IC, Olsen K, Lozano J, et al. Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children. Pediatrics. 2004;113:701–7.

    Article  PubMed  Google Scholar 

  91. Rello J, Lisboa T, Lujan M, et al. Severity of pneumococcal pneumonia associated with genomic bacterial load. Chest. 2009;136:832–40.

    Article  PubMed  Google Scholar 

  92. Bartlett JG. Diagnostic tests for agents of community-acquired pneumonia. Clin Infect Dis. 2011;52 Suppl 4:S296–304.

    Article  PubMed  Google Scholar 

  93. Smith MD, Derrington P, Evans R, et al. Rapid diagnosis of bacteremic pneumococcal infections in adults by using the Binax NOW Streptococcus pneumoniae urinary antigen test: a prospective, controlled clinical evaluation. J Clin Microbiol. 2003;41:2810–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Tzeng DH, Lee YL, Lin YH, Tsai CA, Shi ZY. Diagnostic value of the Binax NOW assay for identifying a pneumococcal etiology in patients with respiratory tract infection. J Microbiol Immunol Infect. 2006;39(1):39–44.

    PubMed  Google Scholar 

  95. Murdoch DR. Diagnosis of Legionella infection. Clin Infect Dis. 2003;36:64–9.

    Article  PubMed  Google Scholar 

  96. Neuman MI, Harper MB. Evaluation of a rapid urine antigen assay for the detection of invasive pneumococcal disease in children. Pediatrics. 2003;112:1279–82.

    Article  PubMed  Google Scholar 

  97. Stralin K, Holmberg H. Usefulness of the Streptococcus pneumoniae urinary antigen test in the treatment of community-acquired pneumonia. Clin Infect Dis. 2005;41:1209–10.

    Article  PubMed  Google Scholar 

  98. Ramilo O, Allman W, Chung W, et al. Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood. 2007;109:2066–77. This study used RNA microarray technology on peripheral blood leukocytes to discover gene expression patterns able to discriminate patients with influenza A infection from those with S. pneumoniae infection, suggesting a paradigm shift in etiologic diagnosis in pneumonia.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Mejias A, Dimo B, Suarez NM, et al. Whole blood gene expression profiles to assess pathogenesis and disease severity in infants with respiratory syncytial virus infection. PLoS Med. 2013;10:e1001549.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Slupsky CM, Rankin KN, Fu H, et al. Pneumococcal pneumonia: potential for diagnosis through a urinary metabolic profile. J Proteome Res. 2009;8:5550–8. This study found that the urinary metabolite profile for pneumococcal pneumonia was significantly different from profiles for viral and other bacterial forms of pneumonia. This suggests that an easily obtainable, noninvasive specimen such as urine may be used to predict etiology and guide antibiotic therapy in CAP.

    Article  CAS  PubMed  Google Scholar 

  101. Laiakis EC, Morris GA, Fornace AJ, Howie SR. Metabolomic analysis in severe childhood pneumonia in the Gambia, West Africa: findings from a pilot study. PLoS One 2010;5.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Lilliam Ambroggio and Todd Florin have no disclosures relevant to this work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd A. Florin.

Additional information

This article is part of the Topical Collection on Respiratory Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Florin, T.A., Ambroggio, L. Biomarkers for Community-Acquired Pneumonia in the Emergency Department. Curr Infect Dis Rep 16, 451 (2014). https://doi.org/10.1007/s11908-014-0451-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-014-0451-8

Keywords

Navigation