Current Infectious Disease Reports

, Volume 12, Issue 3, pp 165–173 | Cite as

Drug-Resistant Malaria: The Era of ACT

  • Jessica T. Lin
  • Jonathan J. Juliano
  • Chansuda WongsrichanalaiEmail author


As drug-resistant falciparum malaria has continued to evolve and spread worldwide, artemisinin-based combination therapies (ACT) have become the centerpiece of global malaria control over the past decade. This review discusses how advances in antimalarial drug resistance monitoring and rational use of the array of ACTs now available can maximize the impact of this highly efficacious therapy, even as resistance to artemisinins is emerging in Southeast Asia.


Drug-resistant malaria Artemisinin-based combination therapy ACT Plasmodium falciparum Antimalarial resistance 



No potential conflict of interest relevant to this article was reported.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Trape JF: The public health impact of chloroquine resistance in Africa. Am J Trop Med Hyg 2001, 64:127.Google Scholar
  2. 2.
    World Health Organization: Methods for Surveillance of Antimalarial Drug Efficacy. Geneva: World Health Organization; 2009.Google Scholar
  3. 3.
    Laufer MK: Monitoring antimalarial drug efficacy: current challenges. Curr Infect Dis Rep 2009,11:59–65.CrossRefPubMedGoogle Scholar
  4. 4.
    Price RN, Uhlemann AC, Brockman A, et al.: Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 2004, 364:438–447.CrossRefPubMedGoogle Scholar
  5. 5.
    Lim P, Alker AP, Khim N, et al.: Pfmdr1 copy number and arteminisin derivatives combination therapy failure in falciparum malaria in Cambodia. Malar J 2009, 8:11.CrossRefPubMedGoogle Scholar
  6. 6.
    Picot S, Olliaro P, de Monbrison F, et al.: A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malar J 2009, 8:89.CrossRefPubMedGoogle Scholar
  7. 7.
    Raj DK, Mu J, Jiang H, et al.: Disruption of a Plasmodium falciparum multidrug resistance-associated protein (PfMRP) alters its fitness and transport of antimalarial drugs and glutathione. J Biol Chem 2009, 284:7687–7696.CrossRefPubMedGoogle Scholar
  8. 8.
    Dahlström S, Ferreira PE, Veiga MI, et al.: Plasmodium falciparum multidrug resistance protein 1 and artemisinin-based combination therapy in Africa. J Infect Dis 2009, 200:1456–1464.CrossRefPubMedGoogle Scholar
  9. 9.
    Korsinczky M, Chen N, Kotecka B, et al.: Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob Agents Chemother 2000, 44:2100–2108.CrossRefPubMedGoogle Scholar
  10. 10.
    Mita T, Tanabe K, Kita K: Spread and evolution of Plasmodium falciparum drug resistance. Parasitol Int 2009, 58:201–209.CrossRefPubMedGoogle Scholar
  11. 11.
    • Plowe CV: The evolution of drug-resistant malaria. Trans R Soc Trop Med Hyg 2009, 103:S11–S14. This article is a concise and telling account of how genetic studies have shed light on the historical spread of drug-resistant malaria, with lessons learned for the future.CrossRefPubMedGoogle Scholar
  12. 12.
    Roper C, Pearce R, Nair S, et al.: Intercontinental spread of pyrimethamine-resistant malaria. Science 2004, 305:1124.CrossRefPubMedGoogle Scholar
  13. 13.
    World Health Organization: Guidelines for the treatment of malaria. Geneva: World Health Organization; 2006.Google Scholar
  14. 14.
    Sibley CH, Barnes KI, Plowe CV: The rationale and plan for creating a World Antimalarial Resistance Network (WARN). Malar J 2007, 6:118.CrossRefPubMedGoogle Scholar
  15. 15.
    Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR: Epidemiology of drug-resistant malaria. Lancet Infect Dis 2002, 2:209–218.CrossRefPubMedGoogle Scholar
  16. 16.
    Ringwald, Pascal: Susceptibility of Plasmodium falciparum to antimalarial drugs: report on global monitoring 1996–2004. Geneva: World Health Organization; 2005.Google Scholar
  17. 17.
    World Health Organization: Antimalarial drug combination therapy: report of a WHO technical consultation, 4–5 April 2001. Geneva: World Health Organization; 2001.Google Scholar
  18. 18.
    World Health Organization: World Malaria Report 2008. Geneva: World Health Organization; 2008. Google Scholar
  19. 19.
    World Health Organization: World Malaria Report 2009. Geneva: World Health Organization, 2009.Google Scholar
  20. 20.
    World Health Organization: Facts on ACTs. January 2006 Update. Available at Accessed February 2010.
  21. 21.
    World Health Organization: Country antimalarial drug policies: by region. Available at Accessed February 2010.
  22. 22.
    •• White NJ: Qinghaosu (artemisinin): the price of success. Science 2008, 320:330–334. This article is an excellent review of artemisinin and the unique pharmacologic properties that make it a promising weapon in malaria elimination.CrossRefPubMedGoogle Scholar
  23. 23.
    Sutherland C, Drakeley CJ, Obisike U, et al.: The addition of artesunate to chloroquine for treatment of Plasmodium falciparum malaria in Gambian children delays, but does not prevent treatment failure. Am J Trop Hyg 2003, 69:19–25.Google Scholar
  24. 24.
    Sinclair D, Zani B, Donegan S, et al.: Artemisinin-based combination therapy for treating uncomplicated malaria. Cochrane Database Syst Rev 2009, CD007483.Google Scholar
  25. 25.
    Price RN, Nosten F, Luxemburger C, et al.: Effects of artemisinin derivatives on malaria transmissibility. Lancet 1996, 347:1654–1658.CrossRefPubMedGoogle Scholar
  26. 26.
    Nosten F, White NJ: Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg 2007, 77:181–192.PubMedGoogle Scholar
  27. 27.
    Denis MB, Tsuyuoka R, Lim P, et al.: Efficacy of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in northwest Cambodia. Trop Med Int Health 2006, 11:1800–1807.CrossRefPubMedGoogle Scholar
  28. 28.
    Kamya MR, Yeka A, Bukirwa H, et al.: Artemether-lumefantrine versus dihydroartemisinin-piperaquine for treatment of malaria: a randomized trial. PLoS Clin Trials 2007, 2:e20.CrossRefPubMedGoogle Scholar
  29. 29.
    Sisowath C, Ferreira PE, Bustamante LY, et al.: The role of pfmdr1 in Plasmodium falciparum tolerance to artemether-lumefantrine in Africa. Trop Med Int Health 2007, 12:736–742.PubMedCrossRefGoogle Scholar
  30. 30.
    Piola P, Fogg C, Bajunirwe F, et al.: Supervised versus unsupervised intake of six-dose artemether-lumefantrine for treatment of acute, uncomplicated Plasmodium falciparum malaria in Mbarara, Uganda: a randomised trial. Lancet 2005, 365:1467–1473.CrossRefPubMedGoogle Scholar
  31. 31.
    Bell DJ, Wootton D, Mukaka M, et al.: Measurement of adherence, drug concentrations and the effectiveness of artemether-lumefantrine, chlorproguanil-dapsone or sulphadoxine-pyrimethamine in the treatment of uncomplicated malaria in Malawi. Malar J 2009, 8:204.CrossRefPubMedGoogle Scholar
  32. 32.
    McGready R, Tan SO, Ashley EA, et al.: A randomised controlled trial of artemether-lumefantrine versus artesunate for uncomplicated Plasmodium falciparum treatment in pregnancy. PLoS Med 2008, 5:e253.CrossRefPubMedGoogle Scholar
  33. 33.
    Abdulla S, Sagara I, Borrmann S, et al.: Efficacy and safety of artemether-lumefantrine dispersible tablets compared with crushed commercial tablets in African infants and children with uncomplicated malaria: a randomised, single-blind, multicentre trial. Lancet 2008, 372:1819–1827.CrossRefPubMedGoogle Scholar
  34. 34.
    Olliaro P, Mussano P: Amodiaquine for treating malaria. Cochrane Database Syst Rev 2003, CD000016.Google Scholar
  35. 35.
    Müller O, Sié A, Meissner P, et al.: Comment on: artemisinin resistance on the Thai-Cambodian border. Lancet. 2009, 374:1419.CrossRefPubMedGoogle Scholar
  36. 36.
    Gasasira AF, Kamya MR, Achan J, et al.: High risk of neutropenia in HIV-infected children following treatment with artesunate plus amodiaquine for uncomplicated malaria in Uganda. Clin Infect Dis 2008, 46:985–991.CrossRefPubMedGoogle Scholar
  37. 37.
    Oesterholt MJ, Alifrangis M, Sutherland CJ, et al.: Submicroscopic gametocytes and the transmission of antifolate-resistant Plasmodium falciparum in Western Kenya. PLoS One 2009, 4:e4364.CrossRefPubMedGoogle Scholar
  38. 38.
    Myint HY, Ashley EA, Daya NPJ, et al.: Effiacy and safety of dihydroartemisinin-piperaquine. Trans R Soc Trop Med Hyg 2007, 101: 858–866.CrossRefPubMedGoogle Scholar
  39. 39.
    White NJ, Pongtavornpinyo W, Maude RJ, et al.: Hyperparasitaemia and low dosing are an important source of anti-malarial drug resistance. Malar J 2009, 8:253.CrossRefPubMedGoogle Scholar
  40. 40.
    • Newton PN, Fernández FM, Plançon A, et al.: A collaborative epidemiological investigation into the criminal fake artesunate trade in South East Asia. PLoS Med 2008, 5:e32. This article provides an eye-opening account of widespread counterfeit activities that are threatening efforts to contain artemisinin resistance.CrossRefPubMedGoogle Scholar
  41. 41.
    Bukirwa H, Critchley J: Sulfadoxine-pyrimethamine plus artesunate versus sulfadoxine-pyrimethamine plus amodiquine for treating uncomplicated malaria. Cochrane Database Syst Rev 2006:CD004966.Google Scholar
  42. 42.
    Achan J, Tibenderana JK, Kyabayinze D, et al.: Effectiveness of quinine versus artemether-lumefantrine for treating uncomplicated falciparum malaria in Ugandan children: randomized trial. BMJ 2009, 339:b2763.CrossRefPubMedGoogle Scholar
  43. 43.
    Yeka A, Achan J, D’Alessandro U, et al.: Quinine monotherapy for treating uncomplicated malaria in the era of artemisinin-based combination therapy: an appropriate public health policy? Lancet Infect Dis 2009, 9:448–442.CrossRefPubMedGoogle Scholar
  44. 44.
    World Health Organization: Global malaria control and elimination: report of a meeting on containment of artemisinin tolerance. Geneva: World Health Organization 2008.Google Scholar
  45. 45.
    • Wongsrichanalai C, Meshnick SR: Declining artesunate-mefloquine efficacy against falciparum malaria on the Cambodia-Thailand border. Emerg Infect Dis 2008, 14:716–719. This article summarizes the earliest evidence of artesunate-mefloquine failure on the Cambodian-Thai border and provides a critical discussion of possible factors contributing to the development of ACT resistance.CrossRefPubMedGoogle Scholar
  46. 46.
    Vijaykadga S, Alker AP, Tongkong D, et al.: Delayed P. falciparum parasite clearance following artesunate-mefloquine combination therapy in Thailand, 1997–2007 [abstract 1119]. Presented at the American Society of Tropical Medicine and Hygiene 57th Annual Meeting. New Orleans, LA, USA; December 7–11, 2008.Google Scholar
  47. 47.
    Lim P, Wongsrichanalai C, Chim P, et al.: Decreased in vitro susceptibility of Plasmodium falciparum isolates to artesunate, mefloquine, chloroquine, and quinine in Cambodia from 2001 to 2007. Antimicrob Agents Chemother 2010, 54(5). doi: 10.1128/AAC.01304-09.
  48. 48.
    •• Dondorp AM, Nosten F, Yi Po, et al.: Artemisinin Resistance in Plasmodium falciparum Malaria. N Eng J Med 2009, 361:455–467. This article presents the first evidence of significant artemisinin resistance in western Cambodia based on an artemisinin monotherapy trial, thus supporting earlier observations of artesunate-mefloquine failure.CrossRefGoogle Scholar
  49. 49.
    Noedl H, Se Y, Schaecher K, et al.: Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 2008, 359:2619–2620.CrossRefPubMedGoogle Scholar
  50. 50.
    Se Y, Lon C, Socheat D, et al.: Effects of increasing artesunate dose in seven-day monotherapy regimens on treatment response in Cambodian patients with uncomplicated falciparum malaria [abstract 22]. Presented at the American Society of Tropical Medicine and Hygiene 58th Annual Meeting. Washington, DC, USA; November 18–22, 2009.Google Scholar
  51. 51.
    Bethell D, Se Y, Lon C, et al.: Dose-dependent risk of neutropenia following seven-day courses of artesunate monotherapy in adult Cambodian patients with acute falciparum malaria [abstract 858]. Presented at the American Society of Tropical Medicine and Hygiene 58th Annual Meeting. Washington, DC, USA; November 18–22, 2009.Google Scholar
  52. 52.
    Karbwang J, Na-Bangchang K, Congpoung K, et al.: Pharmacokinetics of oral artesunate in Thai patients with uncomplicated falciparum malaria. Clin Drug Investig 1998, 15:37–43.CrossRefPubMedGoogle Scholar
  53. 53.
    Stepniewska K, Ashley E, Lee SJ, et al.: In vivo parasitological measures of artemisinin susceptibility. J Infect Dis 2010, 201:570–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Mu J, Myers RA, Jiang H, et al: Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs. Nat Genet 2010, 42:268–71.CrossRefPubMedGoogle Scholar
  55. 55.
    • Olliaro P, Wells TN: The global portfolio of new antimalarial medicines under development. Clin Pharmacol Ther 2009, 85:584–595. This article provides a comprehensive review of new antimalarials in the clinical and preclinical phases of development and their potential impact on malaria control and elimination.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jessica T. Lin
    • 1
  • Jonathan J. Juliano
    • 2
  • Chansuda Wongsrichanalai
    • 3
    Email author
  1. 1.Division of Infectious DiseasesUniversity of North Carolina School of MedicineChapel HillUSA
  2. 2.Center for Infectious DiseasesUniversity of North CarolinaChapel HillUSA
  3. 3.BangkokThailand

Personalised recommendations