Skip to main content

Advertisement

Log in

Bacterial vaginosis: Culture- and PCR-based characterizations of a complex polymicrobial disease’s pathobiology

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Bacterial vaginosis (BV) is an enigmatic polymicrobial disease, and its evolution and pathobiology will not be solved by traditional culture-based methods. Characterization of the vaginal microbiota by polymerase chain reaction-based methods holds great promise. Molecular studies have identified species not detected by culture, but they also have missed some species identified by culture. These studies allow classification of both normal and BV patients based on distinct microbiologic profiles, which may prove important in accessing risk of BV, response to treatment, and risk of complications. More studies using new generations of primers and standardized methods are needed, and data must be analyzed after grouping patients according to microbiologic profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Sobel JD: Vaginitis. N Engl J Med 1997, 337:1896–1903.

    Article  PubMed  CAS  Google Scholar 

  2. Allsworth JE, Peipert JF: Prevalence of bacterial vaginosis: 2001–2004 national health and nutrition examination survey data. Obstet Gynecol 2007, 109:114–120.

    PubMed  Google Scholar 

  3. Roberton AM, Wiggins R, Horner PJ, et al.: A novel bacterial mucinase, glycosulfatase, is associated with bacterial vaginosis. J Clin Microbiol 2005, 43:5504–5508.

    Article  PubMed  CAS  Google Scholar 

  4. McDonald HM, O’Loughlin JA, Jolley PT, et al.: Changes in vaginal flora during pregnancy and association with preterm birth. J Infect Dis 1994, 170:724–728.

    PubMed  CAS  Google Scholar 

  5. Goyal R, Sharma P, Kaur I, et al.: Bacterial vaginosis and vaginal anaerobes in preterm labour. J Indian Med Assoc 2004, 102:548–550, 553.

    PubMed  Google Scholar 

  6. Wiesenfeld HC, Hillier SL, Krohn MA, et al.: Bacterial vaginosis is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection. Clin Infect Dis 2003, 36:663–668.

    Article  PubMed  Google Scholar 

  7. Marrazzo JM, Wiesenfeld HC, Murray PJ, et al.: Risk factors for cervicitis among women with bacterial vaginosis. J Infect Dis 2006, 193:617–624.

    Article  PubMed  Google Scholar 

  8. Marrazzo JM, Koutsky LA, Eschenbach DA, et al.: Characterization of vaginal flora and bacterial vaginosis in women who have sex with women. J Infect Dis 2002, 185:1307–1313.

    Article  PubMed  Google Scholar 

  9. Schwebke JR, Desmond R: Risk factors for bacterial vaginosis in women at high risk for sexually transmitted diseases. Sex Transm Dis 2005, 32:654–658.

    Article  PubMed  Google Scholar 

  10. Colli E, Landoni M, Parazzini F: Treatment of male partners and recurrence of bacterial vaginosis: a randomised trial. Genitourin Med 1997, 73:267–270.

    PubMed  CAS  Google Scholar 

  11. Relman DA: The search for unrecognized pathogens. Science 1999, 284:1308–1310.

    Article  PubMed  CAS  Google Scholar 

  12. Hillier SL, Krohn MA, Nugent RP, Gibbs RS: Characteristics of three vaginal flora patterns assessed by gram stain among pregnant women. Vaginal Infections and Prematurity Study Group. Am J Obstet Gynecol 1992, 166:938–944.

    PubMed  CAS  Google Scholar 

  13. Hellberg D, Nilsson S, Mardh PA: The diagnosis of bacterial vaginosis and vaginal flora changes. Arch Gynecol Obstet 2001, 265:11–15.

    Article  PubMed  CAS  Google Scholar 

  14. Cristiano L, Coffetti N, Dalvai G, et al.: Bacterial vaginosis: prevalence in outpatients, association with some micro-organisms and laboratory indices. Genitourin Med 1989, 65:382–387.

    PubMed  CAS  Google Scholar 

  15. Chow AW, Percival-Smith R, Bartlett KH, et al.: Vaginal colonization with Escherichia coli in healthy women. Determination of relative risks by quantitative culture and multivariate statistical analysis. Am J Obstet Gynecol 1986, 154:120–126.

    PubMed  CAS  Google Scholar 

  16. Ness RB, Kip KE, Soper DE, et al.: Variability of bacterial vaginosis over 6-to 12-month intervals. Sex Transm Dis 2006, 33:381–385.

    Article  PubMed  Google Scholar 

  17. Hillier SL, Critchlow CW, Stevens CE, et al.: Microbiological, epidemiological and clinical correlates of vaginal colonisation by Mobiluncus species. Genitourin Med 1991, 67:26–31.

    PubMed  CAS  Google Scholar 

  18. Cauci S, Driussi S, De Santo D, et al.: Prevalence of bacterial vaginosis and vaginal flora changes in peri-and postmenopausal women. J Clin Microbiol 2002, 40:2147–2152.

    Article  PubMed  Google Scholar 

  19. Amsel R, Totten PA, Spiegel CA, et al.: Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am J Med 1983, 74:14–22.

    Article  PubMed  CAS  Google Scholar 

  20. Deodhar LP, Pandit DV: Mycoplasma hominis in women with bacterial vaginosis. Indian J Med Res 1992, 95:144–147.

    PubMed  CAS  Google Scholar 

  21. Hallen A, Pahlson C, Forsum U: Bacterial vaginosis in women attending STD clinic: diagnostic criteria and prevalence of Mobiluncus spp. Genitourin Med 1987, 63:386–389.

    PubMed  CAS  Google Scholar 

  22. Keane FE, Thomas BJ, Gilroy CB, et al.: The association of Mycoplasma hominis, Ureaplasma urealyticum and Mycoplasma genitalium with bacterial vaginosis: observations on heterosexual women and their male partners. Int J STD AIDS 2000, 11:356–360.

    Article  PubMed  CAS  Google Scholar 

  23. Pybus V, Onderdonk AB: Microbial interactions in the vaginal ecosystem, with emphasis on the pathogenesis of bacterial vaginosis. Microbes Infect 1999, 1:285–292.

    Article  PubMed  CAS  Google Scholar 

  24. Pereira L, Culhane J, McCollum K, et al.: Variation in microbiologic profiles among pregnant women with bacterial vaginosis. Am J Obstet Gynecol 2005, 193:746–751.

    Article  PubMed  Google Scholar 

  25. Forsum U, Holst E, Larsson PG, et al.: Bacterial vaginosis—a microbiological and immunological enigma. Apmis 2005, 113:81–90.

    Article  PubMed  CAS  Google Scholar 

  26. Blackwell AL, Fox AR, Phillips I, Barlow D: Anaerobic vaginosis (non-specific vaginitis): clinical, microbiological, and therapeutic findings. Lancet 1983, 2:1379–1382.

    Article  PubMed  CAS  Google Scholar 

  27. Holst E, Wathne B, Hovelius B, Mardh PA: Bacterial vaginosis: microbiological and clinical findings. Eur J Clin Microbiol 1987, 6:536–541.

    Article  PubMed  CAS  Google Scholar 

  28. Roy S, Sharma M, Ayyagari A, Malhotra S: A quantitative microbiological study of bacterial vaginosis. Indian J Med Res 1994, 100:172–176.

    PubMed  CAS  Google Scholar 

  29. Bartlett JG, Onderdonk AB, Drude E, et al.: Quantitative bacteriology of the vaginal flora. J Infect Dis 1977, 136:271–277.

    PubMed  CAS  Google Scholar 

  30. Ohm MJ, Galask RP: Bacterial flora of the cervix from 100 prehysterectomy patients. Am J Obstet Gynecol 1975, 122:683–687.

    PubMed  CAS  Google Scholar 

  31. Eckburg PB, Bik EM, Bernstein CN, et al.: Diversity of the human intestinal microbial flora. Science 2005, 308:1635–1638.

    Article  PubMed  Google Scholar 

  32. Ley RE, Backhed F, Turnbaugh P, et al.: Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005, 102:11070–11075.

    Article  PubMed  CAS  Google Scholar 

  33. Diaz PI, Chalmers NI, Rickard AH, et al.: Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol 2006, 72:2837–2848.

    Article  PubMed  CAS  Google Scholar 

  34. Sogin ML, Morrison HG, Huber JA, et al.: Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 2006, 103:12115–12120.

    Article  PubMed  CAS  Google Scholar 

  35. Yu Z, Yu M, Morrison M: Improved serial analysis of V1 ribosomal sequence tags (SARST-V1) provides a rapid, comprehensive, sequence-based characterization of bacterial diversity and community composition. Environ Microbiol 2006, 8:603–611.

    Article  PubMed  CAS  Google Scholar 

  36. Neufeld JD, Mohn WW, de Lorenzo V: Composition of microbial communities in hexachlorocyclohexane (HCH) contaminated soils from Spain revealed with a habitat-specific microarray. Environ Microbiol 2006, 8:126–140.

    Article  PubMed  CAS  Google Scholar 

  37. Fisher MM, Triplett EW: Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 1999, 65:4630–4636.

    PubMed  CAS  Google Scholar 

  38. Leuko S, Goh F, Allen MA, et al.: Analysis of intergenic spacer region length polymorphisms to investigate the halophilic archaeal diversity of stromatolites and microbial mats. Extremophiles 2007, 11:203–210.

    Article  PubMed  CAS  Google Scholar 

  39. Sepehri S, Kotlowski R, Bernstein CN, Krause DO: Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease. Inflamm Bowel Dis 2007, 13:675–683.

    Article  PubMed  Google Scholar 

  40. Arias CR, Abernathy JW, Liu Z: Combined use of 16S ribosomal DNA and automated ribosomal intergenic spacer analysis to study the bacterial community in catfish ponds. Lett Appl Microbiol 2006, 43:287–292.

    Article  PubMed  CAS  Google Scholar 

  41. Brown MV, Schwalbach MS, Hewson I, Fuhrman JA: Coupling 16S-ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series. Environ Microbiol 2005, 7:1466–1479.

    Article  PubMed  CAS  Google Scholar 

  42. Jones CM, Thies JE: Soil microbial community analysis using two-dimensional polyacrylamide gel electrophoresis of the bacterial ribosomal internal transcribed spacer regions. J Microbiol Methods 2007, 69:256–267.

    Article  PubMed  CAS  Google Scholar 

  43. Gentry TJ, Wickham GS, Schadt CW, et al.: Microarray applications in microbial ecology research. Microb Ecol 2006, 52:159–175.

    Article  PubMed  CAS  Google Scholar 

  44. Brodie EL, DeSantis TZ, Parker JP, et al.: Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci U S A 2007, 104:299–304.

    Article  PubMed  CAS  Google Scholar 

  45. Buckley DH, Huangyutitham V, Nelson TA, et al.: Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity. Appl Environ Microbiol 2006, 72:4522–4531.

    Article  PubMed  CAS  Google Scholar 

  46. Flanagan JL, Brodie EL, Weng L, et al.: Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa. J Clin Microbiol 2007, 45:1954–1962.

    Article  PubMed  CAS  Google Scholar 

  47. DeSantis TZ, Brodie EL, Moberg JP, et al.: High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 2007, 53:371–383.

    Article  PubMed  CAS  Google Scholar 

  48. Palmer C, Bik EM, Eisen MB, et al.: Rapid quantitative profiling of complex microbial populations. Nucleic Acids Res 2006, 34:e5.

    Article  PubMed  CAS  Google Scholar 

  49. Palmer C, Bik EM, Digiulio DB, et al.: Development of the human infant intestinal microbiota. PLoS Biol 2007, 5:e177.

    Article  PubMed  CAS  Google Scholar 

  50. Bonnet R, Suau A, Dore J, et al.: Differences in rDNA libraries of faecal bacteria derived from 10-and 25-cycle PCRs. Int J Syst Evol Microbiol 2002, 52:757–763.

    Article  PubMed  CAS  Google Scholar 

  51. Acinas SG, Klepac-Ceraj V, Hunt DE, et al.: Fine-scale phylogenetic architecture of a complex bacterial community. Nature 2004, 430:551–554.

    Article  PubMed  CAS  Google Scholar 

  52. Ley RE, Harris JK, Wilcox J, et al.: Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 2006, 72:3685–3695.

    Article  PubMed  CAS  Google Scholar 

  53. Polz MF, Bertilsson S, Acinas SG, Hunt D: A(r)Ray of hope in analysis of the function and diversity of microbial communities. Biol Bull 2003, 204:196–199.

    Article  PubMed  CAS  Google Scholar 

  54. Thompson JR, Marcelino LA, Polz MF: Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res 2002, 30:2083–2088.

    Article  PubMed  CAS  Google Scholar 

  55. Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF: PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol 2005, 71:8966–8969.

    Article  PubMed  CAS  Google Scholar 

  56. Huber T, Faulkner G, Hugenholtz P: Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 2004, 20:2317–2319.

    Article  PubMed  CAS  Google Scholar 

  57. Ashelford KE, Chuzhanova NA, Fry JC, et al.: At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 2005, 71:7724–7736.

    Article  PubMed  CAS  Google Scholar 

  58. Ashelford KE, Chuzhanova NA, Fry JC, et al.: New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 2006, 72:5734–5741.

    Article  PubMed  CAS  Google Scholar 

  59. Hori M, Fukano H, Suzuki Y: Uniform amplification of multiple DNAs by emulsion PCR. Biochem Biophys Res Commun 2007, 352:323–328.

    Article  PubMed  CAS  Google Scholar 

  60. Hyman RW, Fukushima M, Diamond L, et al.: Microbes on the human vaginal epithelium. Proc Natl Acad Sci U S A 2005, 102:7952–7957.

    Article  PubMed  CAS  Google Scholar 

  61. Brown CJ, Wong M, Davis CC, et al.: Preliminary characterization of the normal microbiota of the human vulva using cultivation-independent methods. J Med Microbiol 2007, 56:271–276.

    Article  PubMed  CAS  Google Scholar 

  62. Zhou X, Brown CJ, Abdo Z, et al.: Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J 2007, 1:121–133.

    Article  PubMed  CAS  Google Scholar 

  63. Ferris MJ, Norori J, Zozaya-Hinchliffe M, Martin DH: Cultivation-independent analysis of changes in bacterial vaginosis flora following metronidazole treatment. J Clin Microbiol 2007, 45:1016–1018.

    Article  PubMed  CAS  Google Scholar 

  64. Fredricks DN, Fiedler TL, Marrazzo JM: Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 2005, 353:1899–1911.

    Article  PubMed  CAS  Google Scholar 

  65. Verhelst R, Verstraelen H, Claeys G, et al.: Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis. BMC Microbiol 2004, 4:16.

    Article  PubMed  Google Scholar 

  66. Zhou X, Bent SJ, Schneider MG, et al.: Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology 2004, 150:2565–2573.

    Article  PubMed  CAS  Google Scholar 

  67. Falsen E, Pascual C, Sjoden B, et al.: Phenotypic and phylogenetic characterization of a novel Lactobacillus species from human sources: description of Lactobacillus iners sp. nov. Int J Syst Bacteriol 1999, 49:217–221.

    Article  PubMed  Google Scholar 

  68. Burton JP, Reid G: Evaluation of the bacterial vaginal flora of 20 postmenopausal women by direct (Nugent score) and molecular (polymerase chain reaction and denaturing gradient gel electrophoresis) techniques. J Infect Dis 2002, 186:1770–1780.

    Article  PubMed  CAS  Google Scholar 

  69. Devillard E, Burton JP, Reid G: Complexity of vaginal microflora as analyzed by PCR denaturing gradient gel electrophoresis in a patient with recurrent bacterial vaginosis. Infect Dis Obstet Gynecol 2005, 13:25–31.

    PubMed  CAS  Google Scholar 

  70. Vitali B, Pugliese C, Biagi E, et al.: Dynamics of vaginal bacterial communities in women developing bacterial vaginosis, candidiasis or no infection analysed by PCR-denaturing gradient gel electrophoresis and real-time PCR. Appl Environ Microbiol 2007, Epub ahead of print.

  71. Cook RL, Redondo-Lopez V, Schmitt C, et al.: Clinical, microbiological, and biochemical factors in recurrent bacterial vaginosis. J Clin Microbiol 1992, 30:870–877.

    PubMed  CAS  Google Scholar 

  72. Burton JP, Chilcott CN, Al-Qumber M, et al.: A preliminary survey of Atopobium vaginae in women attending the Dunedin gynaecology out-patients clinic: is the contribution of the hard-to-culture microbiota overlooked in gynaecological disorders? Aust N Z J Obstet Gynaecol 2005, 45:450–452.

    Article  PubMed  Google Scholar 

  73. Sha BE, Chen HY, Wang QJ, et al.: Utility of Amsel criteria, Nugent score, and quantitative PCR for Gardnerella vaginalis, Mycoplasma hominis, and Lactobacillus spp. for diagnosis of bacterial vaginosis in human immunodeficiency virus-infected women. J Clin Microbiol 2005, 43:4607–4612.

    Article  PubMed  Google Scholar 

  74. Verstraelen H, Verhelst R, Claeys G, et al.: Culture-independent analysis of vaginal microflora: the unrecognized association of Atopobium vaginae with bacterial vaginosis. Am J Obstet Gynecol 2004, 191:1130–1132.

    Article  PubMed  Google Scholar 

  75. Fredricks DN, Fiedler TL, Thomas KK, et al.: Targeted polymerase-chain-reaction for the detection of vaginal bacteria associated with bacterial vaginosis. J Clin Microbiol 2007, Epub ahead of print.

  76. Schwebke JR, Lawing LF: Prevalence of Mobiluncus spp among women with and without bacterial vaginosis as detected by polymerase chain reaction. Sex Transm Dis 2001, 28:195–199.

    Article  PubMed  CAS  Google Scholar 

  77. Obata-Yasuoka M, Ba-Thein W, Hamada H, Hayashi H: A multiplex polymerase chain reaction-based diagnostic method for bacterial vaginosis. Obstet Gynecol 2002, 100:759–764.

    Article  PubMed  CAS  Google Scholar 

  78. van Belkum A, van der Schee C, van der Meijden WI, et al.: A clinical study on the association of Trichomonas vaginalis and Mycoplasma hominis infections in women attending a sexually transmitted disease (STD) outpatient clinic. FEMS Immunol Med Microbiol 2001, 32:27–32.

    Article  PubMed  Google Scholar 

  79. Zariffard MR, Saifuddin M, Sha BE, Spear GT: Detection of bacterial vaginosis-related organisms by real-time PCR for Lactobacilli, Gardnerella vaginalis and Mycoplasma hominis. FEMS Immunol Med Microbiol 2002, 34:277–281.

    Article  PubMed  CAS  Google Scholar 

  80. Thies FL, Konig W, Konig B: Rapid characterization of the normal and disturbed vaginal microbiota by application of 16S rRNA gene terminal RFLP fingerprinting. J Med Microbiol 2007, 56:755–761.

    Article  PubMed  CAS  Google Scholar 

  81. Ley RE, Turnbaugh PJ, Klein S, Gordon JI: Microbial ecology: human gut microbes associated with obesity. Nature 2006, 444:1022–1023.

    Article  PubMed  CAS  Google Scholar 

  82. Criswell BS, Ladwig CL, Gardner HL, Dukes CD: Haemophilus vaginalis: vaginitis by inoculation from culture. Obstet Gynecol 1969, 33:195–199.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Akins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalra, A., Palcu, C.T., Sobel, J.D. et al. Bacterial vaginosis: Culture- and PCR-based characterizations of a complex polymicrobial disease’s pathobiology. Curr Infect Dis Rep 9, 485–500 (2007). https://doi.org/10.1007/s11908-007-0074-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-007-0074-4

Keywords

Navigation