Skip to main content

New insights on the pathogenesis of invasive Cryptococcus neoformans infection


Disseminated cryptococcosis begins with infection of the lungs via inhalation. This is followed by escape from the lungs and entry into the bloodstream allowing dissemination to the brain and central nervous system. We discuss the steps involved in dissemination and the host and microbial factors that influence each step. For the host, containment in the lung is accomplished with a combination of cell-mediated and antibody responses. Dissemination occurs when these systems fail and/or when phagocytic cells that fail to kill the yeast instead act as a niche for replication. One of the main microbial factors affecting dissemination is the polysaccharide capsule, a major virulence factor that promotes dissemination at every step. Secreted enzymes are important, including laccase and phospholipase B, which promote escape from the lungs, and urease, which contributes to crossing the blood-brain barrier. Lastly, a number of regulatory factors contribute, especially to growth of Cryptococcus neoformans in the brain.

This is a preview of subscription content, access via your institution.

References and Recommended Reading

  1. 1.

    Wilder JA, Olson GK, Chang YC, et al.: Complementation of a capsule deficient Cryptococcus neoformans with CAP64 restores virulence in a murine lung infection. Am J Respir Cell Mol Biol 2002, 26:306–314.

    PubMed  CAS  Google Scholar 

  2. 2.

    Noverr MC, Williamson PR, Fajardo RS, Huffnagle GB: CNLAC1 is required for extrapulmonary dissemination of Cryptococcus neoformans but not pulmonary persistence. Infect Immun 2004, 72:1693–1699.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Olszewski MA, Noverr MC, Chen GH, et al.: Urease expression by Cryptococcus neoformans promotes micro-vascular sequestration, thereby enhancing central nervous system invasion. Am J Pathol 2004, 164:1761–1771.

    PubMed  CAS  Google Scholar 

  4. 4.

    Huffnagle GB, Toews GB, Burdick MD, et al.: Afferent phase production of TNF-alpha is required for the development of protective T cell immunity to Cryptococcus neoformans. J Immunol 1996, 157:4529–4536.

    PubMed  CAS  Google Scholar 

  5. 5.

    Kawakami K, Tohyama M, Teruya K, et al.: Contribution of interferon-gamma in protecting mice during pulmonary and disseminated infection with Cryptococcus neoformans. FEMS Immunol Med Microbiol 1996, 13:123–130.

    PubMed  CAS  Google Scholar 

  6. 6.

    Kawakami K, Qureshi MH, Zhang T, et al.: IL-18 protects mice against pulmonary and disseminated infection with Cryptococcus neoformans by inducing IFN-gamma production. J Immunol 1997, 159:5528–5534.

    PubMed  CAS  Google Scholar 

  7. 7.

    Miyagi K, Kawakami K, Kinjo Y, et al.: CpG oligodeoxynucleotides promote the host protective response against infection with Cryptococcus neoformans through induction of interferon-gamma production by CD4+ T cells. Clin Exp Immunol 2005, 140:220–229.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Feldmesser M, Casadevall A: Effect of serum IgG1 to Cryptococcus neoformans glucuronoxylomannan on murine pulmonary infection. J Immunol 1997, 158:790–799.

    PubMed  CAS  Google Scholar 

  9. 9.

    Maitta RW, Datta K, Chang Q, et al.: Protective and nonprotective human immunoglobulin M monoclonal antibodies to Cryptococcus neoformans glucuronoxylomannan manifest different specificities and gene use profiles. Infect Immun 2004, 72:4810–4818.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Rivera J, Zaragoza O, Casadevall A: Antibody-mediated protection against Cryptococcus neoformans pulmonary infection is dependent on B cells. Infect Immun 2005, 73:1141–1150.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Taborda CP, Rivera J, Zaragoza O, Casadevall A: More is not necessarily better: prozone-like effects in passive immunization with IgG. J Immunol 2003, 170:3621–3630.

    PubMed  CAS  Google Scholar 

  12. 12.

    Rivera J, Casadevall A: Mouse genetic background is a major determinant of isotype-related differences for antibody-mediated protective efficacy against Cryptococcus neoformans. J Immunol 2005, 174:8017–8026.

    PubMed  CAS  Google Scholar 

  13. 13.

    Kozel TR, deJong BC, Grinsell MM, et al.: Characterization of anticapsular monoclonal antibodies that regulate activation of the complement system by the Cryptococcus neoformans capsule. Infect Immun 1998, 66:1538–1546.

    PubMed  CAS  Google Scholar 

  14. 14.

    Goldman DL, Khine H, Abadi J, et al.: Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics 2001, 107:E66.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Goldman DL, Lee SC, Mednick AJ, et al.: Persistent Cryptococcus neoformans pulmonary infection in the rat is associated with intracellular parasitism, decreased inducible nitric oxide synthase expression, and altered antibody responsiveness to cryptococcal polysaccharide. Infect Immun 2000, 68:832–838.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Zaragoza O, Alvarez M, Telzak A, et al.: The Relative Susceptibility of Mouse Strains to Pulmonary Cryptococcus neoformans Infection Is Associated with Pleiotropic Differences in the Immune Response. Infect Immun 2007, 75:2729–2739.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Chen SC, Muller M, Zhou JZ, et al.: Phospholipase activity in Cryptococcus neoformans: a new virulence factor? J Infect Dis 1997, 175:414–420.

    PubMed  CAS  Google Scholar 

  18. 18.

    Noverr MC, Cox GM, Perfect JR, Huffnagle GB: Role of PLB1 in pulmonary inflammation and cryptococcal eicosanoid production. Infect Immun 2003, 71:1538–1547.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Santangelo RT, Nouri-Sorkhabi MH, Sorrell TC, et al.: Biochemical and functional characterisation of secreted phospholipase activities from Cryptococcus neoformans in their naturally occurring state. J Med Microbiol 1999, 48:731–740.

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Santangelo R, Zoellner H, Sorrell T, et al.: Role of extracellular phospholipases and mononuclear phagocytes in dissemination of cryptococcosis in a murine model. Infect Immun 2004, 72:2229–2239.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Luberto C, Toffaletti DL, Wills EA, et al.: Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes Dev 2001, 15:201–212.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Shea JM, Kechichian TB, Luberto C, Del Poeta M: The cryptococcal enzyme inositol phosphosphingolipid-phospholipase C confers resistance to the antifungal effects of macrophages and promotes fungal dissemination to the central nervous system. Infect Immun 2006, 74:5977–5988.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Shao X, Mednick A, Alvarez M, et al.: An innate immune system cell is a major determinant of species-related susceptibility differences to fungal pneumonia. J Immunol 2005, 175:3244–3251.

    PubMed  CAS  Google Scholar 

  24. 24.

    Tucker SC, Casadevall A: Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc Natl Acad Sci U S A 2002, 99:3165–3170.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Ma H, Croudace JE, Lammas DA, May RC: Expulsion of live pathogenic yeast by macrophages. Curr Biol 2006, 16:2156–2160.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Alvarez M, Casadevall A: Phagosome Extrusion and Host-Cell Survival after Cryptococcus neoformans Phagocytosis by Macrophages. Curr Biol 2006, 16:2161–2165.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Yauch LE, Lam JS, Levitz SM: Direct Inhibition of T-Cell responses by the cryptococcus capsular polysaccharide glucuronoxylomannan. PLoS Pathog 2006, 2:e120.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Vecchiarelli A: Immunoregulation by capsular components of Cryptococcus neoformans. Med Mycol 2000, 38:407–417.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Chang YC, Stins MF, McCaffery MJ, et al.: Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect Immun 2004, 72:4985–4995.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Chen SH, Stins MF, Huang SH, et al.: Cryptococcus neoformans induces alterations in the cytoskeleton of human brain microvascular endothelial cells. J Med Microbiol 2003, 52:961–970.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Guerrero A, Jain N, Goldman DL, Fries BC: Phenotypic switching in Cryptococcus neoformans. Microbiology 2006, 152:3–9.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Fries BC, Taborda CP, Serfass E, Casadevall A: Phenotypic switching of Cryptococcus neoformans occurs in vivo and influences the outcome of infection. J Clin Invest 2001, 108:1639–1648.

    PubMed  CAS  Google Scholar 

  33. 33.

    Jain N, Li L, McFadden DC, et al.: Phenotypic switching in a Cryptococcus neoformans variety gattii strain is associated with changes in virulence and promotes dissemination to the central nervous system. Infect Immun 2006, 74:896–903.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Moyrand F, Fontaine T, Janbon G: Systematic capsule gene disruption reveals the central role of galactose metabolism on Cryptococcus neoformans virulence. Mol Microbiol 2007, 64:771–781.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    McClelland EE, Perrine WT, Potts WK, Casadevall A: The relationship of virulence factor expression to evolved virulence in mouse-passaged Cryptococcus neoformans lines. Infect Immun 2005, 73:7047–7050.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Charlier C, Chretien F, Baudrimont M, et al.: Capsule structure changes associated with Cryptococcus neoformans crossing of the blood-brain barrier. Am J Pathol 2005, 166:421–432.

    PubMed  CAS  Google Scholar 

  37. 37.

    Cox GM, Mukherjee J, Cole GT, et al.: Urease as a virulence factor in experimental cryptococcosis. Infect Immun 2000, 68:443–448.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Uicker WC, Doyle HA, McCracken JP, et al.: Cytokine and chemokine expression in the central nervous system associated with protective cell-mediated immunity against Cryptococcus neoformans. Med Mycol 2005, 43:27–38.

    PubMed  Article  Google Scholar 

  39. 39.

    Huffnagle GB, McNeil LK: Dissemination of C. neoformans to the central nervous system: role of chemokines, Th1 immunity and leukocyte recruitment. J Neurovirol 1999, 5:76–81.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Hughes AL, Todd BL, Espenshade PJ: SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Cell 2005, 120:831–842.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Chang YC, Bien CM, Lee H, et al.: Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans. Mol Microbiol 2007, 64:614–629.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Waterman SR, Hacham M, Hu G, et al.: Role of a CUF1/CTR4 copper regulatory axis in the virulence of Cryptococcus neoformans. J Clin Invest 2007, 117:794–802.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Hakim JG, Gangaidzo IT, Heyderman RS, et al.: Impact of HIV infection on meningitis in Harare, Zimbabwe: a prospective study of 406 predominantly adult patients. AIDS 2000, 14:1401–1407.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Heyderman RS, Gangaidzo IT, Hakim JG, et al.: Cryptococcal meningitis in human immunodeficiency virus-infected patients in Harare, Zimbabwe. Clin Infect Dis 1998, 26:284–289.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Shibuya K, Hirata A, Omuta J, et al.: Granuloma and cryptococcosis. J Infect Chemother 2005, 11:115–122.

    PubMed  Article  Google Scholar 

  46. 46.

    Huffnagle GB, Yates JL, Lipscomb MF: T cell-mediated immunity in the lung: a Cryptococcus neoformans pulmonary infection model using SCID and athymic nude mice. Infect Immun 1991, 59:1423–1433.

    PubMed  CAS  Google Scholar 

  47. 47.

    Cherniak R, Sundstrom JB: Polysaccharide antigens of the capsule of Cryptococcus neoformans. Infect Immun 1994, 62:1507–1512.

    PubMed  CAS  Google Scholar 

  48. 48.

    Lortholary O, Improvisi L, Rayhane N, et al.: Cytokine profiles of AIDS patients are similar to those of mice with disseminated Cryptococcus neoformans infection. Infect Immun 1999, 67:6314–6320.

    PubMed  CAS  Google Scholar 

  49. 49.

    Ieong MH, Reardon CC, Levitz SM, Kornfeld H: Human immunodeficiency virus type 1 infection of alveolar macrophages impairs their innate fungicidal activity. Am J Respir Crit Care Med 2000, 162:966–970.

    PubMed  CAS  Google Scholar 

  50. 50.

    Pettoello-Mantovani M, Casadevall A, Kollmann TR, et al.: Enhancement of HIV-1 infection by the capsular polysaccharide of Cryptococcus neoformans. Lancet 1992, 339:21–23.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Arturo Casadevall.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eisenman, H.C., Casadevall, A. & McClelland, E.E. New insights on the pathogenesis of invasive Cryptococcus neoformans infection. Curr Infect Dis Rep 9, 457–464 (2007).

Download citation


  • Cryptococcus Neoformans
  • Cryptococcosis
  • Brain Microvascular Endothelial Cell
  • Phenotypic Switching
  • Fungal Burden