Current Infectious Disease Reports

, Volume 7, Issue 5, pp 373–380 | Cite as

Ectoparasitic infestations

  • Jörg Heukelbach
  • Shelley F. Walton
  • Hermann Feldmeier


Ectoparasitic infestations are highly prevalent in resourcepoor populations throughout the world and are associated with considerable morbidity. Reliable data on the epidemiology, immunology, and therapy of ectoparasitic infestations and on the biology of the parasites remain scarce. The control of parasitic skin diseases, such as scabies, pediculosis, tungiasis, myiasis, and cutaneous larva migrans in endemic areas remains a challenge. Using appropriate study designs, it is imperative to increase further the knowledge on the various aspects of the parasites and the infestations they cause.


Ivermectin Scabies Head Louse Myiasis House Dust Mite Allergen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Hoy W, McDonald SP: Albuminuria: marker or target in indigenous populations. Kidney Int Suppl 2004, 66:25–31.CrossRefGoogle Scholar
  2. 2.
    Arlian LG, Morgan MS, Estes SA, et al.: Circulating IgE in patients with ordinary and crusted scabies. J Med Entomol 2004, 41:74–77.PubMedGoogle Scholar
  3. 3.
    Lowenstein M, Kahlbacher H, Peschke R: On the substantial variation in serological responses in pigs to Sarcoptes scabiei var. suis using different commercially available indirect enzyme-linked immunosorbent assays. Parasitol Res 2004, 94:24–30.PubMedCrossRefGoogle Scholar
  4. 4.
    Haas N, Wagemann B, Hermes B, et al.: Crossreacting IgG antibodies against fox mite antigens in human scabies. Arch Dermatol Res 2005, 296:327–331.PubMedCrossRefGoogle Scholar
  5. 5.
    Walton S, Low Choy J, Bonson A, et al.: Genetically distinct dog-derived and human-derived Sarcoptes scabiei in scabiesendemic communities in northern Australia. Am J Trop Med Hyg 1999, 61:542–547.PubMedGoogle Scholar
  6. 6.
    Walton SF, Dougall A, Pizzutto S, et al.: Genetic epidemiology of Sarcoptes scabiei (Acari: Sarcoptidae) in northern Australia. Int J Parsitol 2004, 34:839–849.CrossRefGoogle Scholar
  7. 7.
    Ambroise-ThomasP: Emerging parasite zoonoses: the role of host-parasite relationship. Int J Parasitol 2000, 30:1361–1367.PubMedCrossRefGoogle Scholar
  8. 8.
    Harumal P, Morgan MS, Walton SF, et al.: Identification of a homologue of a house dust mite allergen in a cDNA library from Sarcoptes scabiei var. hominis and evaluation of its vaccine potential in a rabbit/S. scabiei var. canis model. Am J Trop Med Hyg 2003, 68:54–60.PubMedGoogle Scholar
  9. 9.
    Roberts LJ, Huffam SE, Walton SF, Currie BJ: Crusted scabies: clinical and immunological findings in seventy-eight patients and a review of the literature. J Infect 2005, 50:375–381.PubMedCrossRefGoogle Scholar
  10. 10.
    Walton SF, Holt DC: Scabies: new future for a neglected disease. Adv Parasitol 2004, 57:309–376. This comprehensive review highlights recent advances in the study and control of scabies in human and veterinary medicine.PubMedCrossRefGoogle Scholar
  11. 11.
    Tielsch JM, Beeche A: Impact of ivermectin on illness and disability associated with onchocerciasis. Trop Med Int Health 2004, 9:45–56.CrossRefGoogle Scholar
  12. 12.
    Heukelbach J, Winter B, Wilcke T, et al.: Selective mass treatment with ivermectin to control intestinal helminthiases and parasitic skin diseases in a severely affected population. Bull World Health Organ 2004, 82:563–571.PubMedGoogle Scholar
  13. 13.
    Lawrence G, Leafasia J, Sheridan J, et al.: Control of scabies, skin sores and haematuria in children in the Solomon Islands: another role for ivermectin. Bull World Health Organ 2005, 83:34–42.PubMedGoogle Scholar
  14. 14.
    Currie BJ, Harumal P, McKinnon M, Walton SF: First documentation of in vivo and in vitro ivermectin resistance in Sarcoptes scabiei. Clin Infect Dis 2004, 39:8–12.CrossRefGoogle Scholar
  15. 15.
    Micali G, Lacarrubba F, Tedeschi A: Videodermatoscopy enhances the ability to monitor efficacy of scabies treatment and allows optimal timing of drug application. J Eur Acad Dermatol Venereol 2004, 18:153–154.PubMedCrossRefGoogle Scholar
  16. 16.
    Morsy TA, Rahem MA, el-Sharkawy EM, Shatat MA: Eucalyptus globulus (camphor oil) against the zoonotic scabies, Sarcoptes scabiei. J Egypt Soc Parasitol 2003, 33:47–53.PubMedGoogle Scholar
  17. 17.
    Walton SF, McKinnon M, Pizzutto S, et al.: Acaricidal activity of Melaleuca alternifolia (Tea Tree) oil: in vitro sensitivity of Sarcoptes scabiei var. hominis to terpinen-4-ol. Arch Dermatol 2004, 140:563–566.PubMedCrossRefGoogle Scholar
  18. 18.
    Fischer K, Holt DC, Harumal P, et al.: Generation and characterisation of cDNA clones from Sarcoptes scabiei var. hominis for an expressed sequence tag library: identification of homologues of house dust mite allergens. Am J Trop Med Hyg 2003, 68:61–64.PubMedGoogle Scholar
  19. 19.
    Ljunggren EL, Nilsson D, Mattsson JG: Expressed sequence tag analysis of Sarcoptes scabiei. Parasitology 2003, 127:139–145.PubMedCrossRefGoogle Scholar
  20. 20.
    Holt DC, Fischer K, Allen GE, et al.: Mechanisms for a novel immune evasion strategy in the scabies mite Sarcoptes scabiei: A multigene family of inactivated serine proteases. J Invest Dermatol 2003, 121:1419–1424.PubMedCrossRefGoogle Scholar
  21. 21.
    Holt DC, Fischer K, Pizzutto SJ, et al.: A multigene family of inactivated cysteine proteases in Sarcoptes scabiei. J Invest Dermatol 2004, 123:240–241.PubMedCrossRefGoogle Scholar
  22. 22.
    Pettersson EU, Ljunggren EL, Morrison DA, Mattsson JG: Functional analysis and localisation of a delta-class glutathione S-transferase from Sarcoptes scabiei. Int J Parasitol 2005, 35:39–48.PubMedCrossRefGoogle Scholar
  23. 23.
    Hansen RC, O’Haver J: Economic considerations associated with Pediculus humanus capitis infestation. Clin Pediatr (Phila) 2004, 43:523–527.CrossRefGoogle Scholar
  24. 24.
    Heukelbach J, Wilcke T, Winter B, Feldmeier H: Epidemiology and morbidity of scabies and pediculosis capitis in resourcepoor communities in northeast Brazil. Br J Dermatol 2005, 153:150–156. Epidemiologic data on scabies and pediculosis from longitudinal studies in resource-poor communities are presented in this article.PubMedCrossRefGoogle Scholar
  25. 25.
    DownsAM: Managing head lice in an era of increasing resistance to insecticides. Am J Clin Dermatol 2004, 5:169–177. This article is a review of current pediculicides, resistance, and management of head lice.PubMedCrossRefGoogle Scholar
  26. 26.
    Counahan M, Andrews R, Buttner P, et al.: Head lice prevalence in primary schools in Victoria, Australia. J Paediatr Child Health 2004, 40:616–619.PubMedCrossRefGoogle Scholar
  27. 27.
    Yang YC, Lee HS, Clark JM, Ahn YJ: Insecticidal activity of plant essential oils against Pediculus humanus capitis (Anoplura: Pediculidae). J Med Entomol 2004, 41:699–704.PubMedCrossRefGoogle Scholar
  28. 28.
    Yang YC, Choi HY, Choi WS, et al.: Ovicidal and adulticidal activity of Eucalyptus globulus leaf oil terpenoids against Pediculus humanus capitis (Anoplura: Pediculidae). J Agric Food Chem 2004, 52:2507–2511.PubMedCrossRefGoogle Scholar
  29. 29.
    Mumcuoglu KY, Magdassi S, Miller J, et al.: Repellency of citronella for head lice: double-blind randomized trial of efficacy and safety. Isr Med Assoc J 2004, 6:756–759.PubMedGoogle Scholar
  30. 30.
    Mills C, Cleary BJ, Gilmer JF, Walsh JJ: Inhibition of acetylcholinesterase by Tea Tree oil. J Pharm Pharmacol 2004, 56:375–379.PubMedCrossRefGoogle Scholar
  31. 31.
    Takano-Lee M, Edman JD, Mullens BA, Clark JM: Home remedies to control head lice: assessment of home remedies to control the human head louse, Pediculus humanus capitis (Anoplura: Pediculidae). J Pediatr Nurs 2004, 19:393–398.PubMedCrossRefGoogle Scholar
  32. 32.
    Pedra JH, Brandt A, Li HM, et al.: Transcriptome identification of putative genes involved in protein catabolism and innate immune response in human body louse (Pediculicidae: Pediculus humanus). Insect Biochem Mol Biol 2003, 33:1135–1143.PubMedCrossRefGoogle Scholar
  33. 33.
    Kollien AH, Waniek PJ, Prols F, et al.: Cloning and characterization of a trypsin-encoding cDNA of the human body louse Pediculus humanus. Insect Mol Biol 2004, 13:9–18.PubMedCrossRefGoogle Scholar
  34. 34.
    Perotti MA, Catala SS, Ormeno Adel V, et al.: The sex ratio distortion in the human head louse is conserved over time. BMC Genet 2004, 5:10.PubMedCrossRefGoogle Scholar
  35. 35.
    Taylor MJ, Hoerauf A: A new approach to the treatment of filariasis. Curr Opin Infect Dis 2001, 14:727–731.PubMedGoogle Scholar
  36. 36.
    Hise AG, Gillette-Ferguson I, Pearlman E: The role of endosymbiotic Wolbachia bacteria in filarial disease. Cell Microbiol 2004, 6:97–104.PubMedCrossRefGoogle Scholar
  37. 37.
    Shashindran CH, Gandhi IS, Krishnasamy S, Ghosh MN: Oral therapy of pediculosis capitis with cotrimoxazole. Br J Dermatol 1978, 98:699–700.PubMedCrossRefGoogle Scholar
  38. 38.
    Witt LH, Linardi PM, Meckes O, et al.: Blood-feeding of Tunga penetrans males. Med Vet Entomol 2004, 18:439–441.PubMedCrossRefGoogle Scholar
  39. 39.
    Feldmeier H, Heukelbach J, Eisele M, et al.: Bacterial superinfection in human tungiasis. Trop Med Int Health 2002, 7:559–564.PubMedCrossRefGoogle Scholar
  40. 40.
    Franck S, Feldmeier H, Heukelbach J: Tungiasis: more than an exotic nuisance. Travel Med Infect Dis 2003, 1:159–166. This article provides a comprehensive review on all aspects of tungiasis.PubMedCrossRefGoogle Scholar
  41. 41.
    Veraldi S, Carrera C, Schianchi R: Tungiasis has reached Europe. Dermatology 2000, 201:382.PubMedCrossRefGoogle Scholar
  42. 42.
    Muehlen M, Feldmeier H, Wilcke T, et al.: Identifying risk factors for tungiasis and heavy infestation in a resource-poor community in Northeast Brazil. Trans Roy Soc Trop Med Hyg 2005, In press.Google Scholar
  43. 43.
    Heukelbach J, Costa AML, Wilcke T, et al.: The animal reservoir of Tunga penetrans in severely affected communities of north-east Brazil. Med Vet Entomol 2004, 18:329–335.PubMedCrossRefGoogle Scholar
  44. 44.
    Heukelbach J, Wilcke T, Harms G, Feldmeier H: Seasonal variation of tungiasis in an endemic community. Am J Trop Med Hyg 2005, 72:145–149.PubMedGoogle Scholar
  45. 45.
    Eisele M, Heukelbach J, van Marck E, et al.: Investigations on the biology, epidemiology, pathology and control of Tunga penetrans in Brazil: I. Natural history of tungiasis in man. Parasitol Res 2003, 90:87–99. This review provides a detailed clinical and microscopic description of the natural history of tungiasis.PubMedGoogle Scholar
  46. 46.
    Heukelbach J, Franck S, Feldmeier H: Therapy of tungiasis: a double-blinded randomized controlled trial with oral ivermectin. Mem Inst Oswaldo Cruz 2004, 99:873–876.PubMedCrossRefGoogle Scholar
  47. 47.
    Heukelbach J, Eisele M, Jackson A, Feldmeier H: Topical treatment of tungiasis: a randomized, controlled trial. Ann Trop Med Parasitol 2003, 97:743–749.PubMedCrossRefGoogle Scholar
  48. 48.
    Schwalfenberg S, Witt LH, Kehr JD, et al.: Prevention of tungiasis using a biological repellent: a small case series. Ann Trop Med Parasitol 2004, 98:89–94.PubMedCrossRefGoogle Scholar
  49. 49.
    Heukelbach J, Bonow I, Witt LH, et al.: High infection rate of Wolbachia endobacteria in the sand flea Tunga penetrans from Brazil. Acta Trop 2004, 92:225–230.PubMedCrossRefGoogle Scholar
  50. 50.
    Feldmeier H, Witt LH, Schwalfenberg S, et al.: Investigations on the biology, epidemiology, pathology and control of Tunga penetrans in Brazil V. Cytokine concentrations in experimentally infected Wistar rats. Parasitol Res 2004, 94:371–376.PubMedCrossRefGoogle Scholar
  51. 51.
    Feldmeier H, Heukelbach J, Eisele M, et al.: Investigations on the biology, epidemiology, pathology and control of Tunga penetrans in Brazil: III. Cytokine levels in peripheral blood of infected humans. Parasitol Res 2003, 91:298–303.PubMedCrossRefGoogle Scholar
  52. 52.
    Pampiglione S, Trentini M, Fioravanti ML, Gustinelli A: Differential diagnosis between Tunga penetrans (L., 1758) and T. trimamillata Pampiglione et al., 2002 (Insecta, Siphonaptera), the two species of the genus Tunga parasitic in man. Parasite 2004, 11:51–57.PubMedGoogle Scholar
  53. 53.
    Vobis M, D’Haese J, Mehlhorn H, et al.: Molecular biological investigations of Brazilian Tunga sp. isolates from man, dogs, cats, pigs and rats. Parasitol Res 2005, 96:107–112.PubMedCrossRefGoogle Scholar
  54. 54.
    Heukelbach J, Wilcke T, Meier A, et al.: A longitudinal study on cutaneous larva migrans in an impoverished Brazilian township. Travel Med Infect Dis 2003, 1:213–218. This study provides evidence for a strong seasonal variation of cutaneous larva migrans.PubMedCrossRefGoogle Scholar
  55. 55.
    Heukelbach J, Wilcke T, Feldmeier H: Cutaneous larva migrans (creeping eruption) in an urban slum in Brazil. Int J Dermatol 2004, 43:511–515.PubMedCrossRefGoogle Scholar
  56. 56.
    Tremblay A, MacLean JD, Gyorkos T, Macpherson DW: Outbreak of cutaneous larva migrans in a group of travelers. Trop Med Int Health 2000, 5:330–334.PubMedCrossRefGoogle Scholar
  57. 57.
    CaumesE: Treatment of cutaneous larva migrans and Toxocara infection. Fundam Clin Pharmacol 2003, 17:213–216.PubMedCrossRefGoogle Scholar
  58. 58.
    de Barros N, D’Avila MS, de Pace BS, et al.: Cutaneous myiasis of the breast: mammographic and us features-report of five cases. Radiology 2001, 218:517–520.PubMedGoogle Scholar
  59. 59.
    Quintanilla-Cedillo MR, Leon-Urena H, Contreras-Ruiz J, Arenas R: The value of Doppler ultrasound in diagnosis in 25 cases of furunculoid myiasis. Int J Dermatol 2005, 44:34–37.PubMedCrossRefGoogle Scholar
  60. 60.
    OtrantoD: The immunology of myiasis: parasite survival and host defense strategies. Trends Parasitol 2001, 17:176–182.PubMedCrossRefGoogle Scholar
  61. 61.
    Otranto D, Stevens JR: Molecular approaches to the study of myiasis-causing larvae. Int J Parasitol 2002, 32:1345–1360. This is a comprehensive overview on the taxonomy, biology, and molecular characterization of fly larvae responsible for human and animal myiases.PubMedCrossRefGoogle Scholar
  62. 62.
    Norwood C, Smith KJ, Neafie R, Skelton H: Are cutaneous reactions to fly larvae mediated by CD4+, TIA+ NK1.1 T Cells? J Cutan Med Surg 2001, 5:400–405.PubMedCrossRefGoogle Scholar
  63. 63.
    Costa DC, de Tarso Ponte Pierre-Filho, Mac Cord Medina F, Mota RG, Carrera CR: Use of oral ivermectin in a patient with destructive rhino-orbital myiasis. Eye 2005, In press.Google Scholar
  64. 64.
    De Tarso P, Pierre-Filho P, Minguini N, et al.: Use of ivermectin in the treatment of orbital myiasis caused by Cochliomyia hominivorax. Scand J Infect Dis 2004, 36:503–505.PubMedCrossRefGoogle Scholar
  65. 65.
    Nuesch R, Rahm G, Rudin W, et al.: Clustering of bloodstream infections during maggot debridement therapy using contaminated larvae of Protophormia terraenovae. Infection 2002, 30:306–309.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2005

Authors and Affiliations

  • Jörg Heukelbach
    • 1
  • Shelley F. Walton
  • Hermann Feldmeier
  1. 1.Departamento de Saúde Comunitária, Faculdade de MedicinaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations