Skip to main content

Advertisement

Log in

Can enterococcal infections initiate sepsis syndrome?

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Enterococci are the third most common nosocomial bloodstream pathogen and frequently are the causative pathogen(s) of intra-abdominal, genitourinary, surgical wound, endovascular, or other serious infections. In addition to a diverse spectrum of intrinsic and acquired antimicrobial resistance mechanisms, some strains of enterococci exhibit numerous virulence factors that facilitate mucosal adherence, tissue invasiveness, endovascular attachment, and inflammation production. However, the opportunistic nature of enterococcal infection coupled with animal models of experimental enterococcal and mixed infection have caused many to question the independent capacity of this organism to incite severe sepsis or septic shock. Despite evidence suggesting that this organism possesses low intrinsic virulence, observational and interventional trials of enterococcal bacteremia and sepsis strongly support the notion that Enterococcus is capable of promulgating sepsis as a solitary or copathogen with more serious sequelae in the immunocompromised hosts. Monomicrobial enterococcal bacteremia appears to be increasing during the glycopeptide-resistant era, which bolsters the notion that pure enterococcal sepsis is a real entity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Murray BE: The life and times of the Enterococcus. Clin Microbiol Rev 1990, 3:46–65.

    PubMed  CAS  Google Scholar 

  2. Iwen PC, Kelly DM, Linder J, et al.: Change in prevalence and antibiotic resistance of Enterococcus species isolated from blood cultures over an 8-year period. Antimicrob Agents Chemother 1997, 41:494–495.

    PubMed  CAS  Google Scholar 

  3. Schaberg DR, Culver DH, Gaynes RP: Major trends in microbial etiology of nosocomial infection. Am J Med 1991, 91(Suppl3B):72S-75S.

    Article  PubMed  CAS  Google Scholar 

  4. Centers for Disease Control and Prevention: Nosocomial enterococci resistant to vancomycin—United States, 1989–1993. MMWR Morb Mortal Wkly Rep 1993, 42:597–599.

    Google Scholar 

  5. Murray BE: Vancomycin-resistant enterococcal infections. N Engl J Med 2000, 342:710–721. This is a comprehensive review of enterococcal resistance mechanisms and their influence on enterococcal colonization, infection, and outcome.

    Article  PubMed  CAS  Google Scholar 

  6. Horvitz RA, Von Graevenitz A: A clinical study of the role of enterococci as sole agents of wound and tissue infection. Yale J Biol Med 1977, 50:391–395.

    PubMed  CAS  Google Scholar 

  7. Johnson JP: The pathogenecity of enterococci. J Antimicrob Chemother 1994, 33:1083–1089.

    Article  PubMed  CAS  Google Scholar 

  8. Nichols RL, Muzik AC: Enterococcal infections in surgical patients. The mystery continues. Clin Infect Dis 1992, 15:72–76.

    PubMed  CAS  Google Scholar 

  9. American College of Chest Physicians/Society of Critical Care Medicine: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 1992, 20:864–874.

  10. Angus DC, Linde-Zwirble WT, Lidicker J, et al.: Epidemiology of severe sepsis in the United States: analysis of incidence, outcome and associated costs of care. Crit Care Med 2001, 29:1303–1310.

    Article  PubMed  CAS  Google Scholar 

  11. Danner RL, Elin RJ, Hosseini JM, et al.: Endotoxemia in human septic shock. Chest 1991, 99:169–175.

    PubMed  CAS  Google Scholar 

  12. Brandtzaeg P, Kerrulf P, Gaustad P, et al.: Plasma endotoxin as a predictor of multiple organ failure and death in systemic meningococcal disease. J Infect Dis 1989, 159:195–204.

    PubMed  CAS  Google Scholar 

  13. Hurley JC: Concordance of endotoxemia with gram-negative bacteremia in patients with gram-negative sepsis. A meta analysis. J Clin Microbiol 1994, 32:2120–2127.

    PubMed  CAS  Google Scholar 

  14. Timmerman CP, Mattsson E, Martinez-Martinez L, et al.: Induction of release of tumor necrosis factor from human monocytes by staphylococci and staphylococcal peptidoglycans. Infect Immun 1993, 61:4167–4172.

    PubMed  CAS  Google Scholar 

  15. De Kimpe SJ, Kengatharan M, Thiemermann C, et al.: The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure. Proc Natl Acad Sci 1995, 92:10359–10373.

    Article  PubMed  Google Scholar 

  16. Gold MR, Miller CL, Mishelli RI: Soluble non-cross-linked peptidoglycan polymers stimulate monocyte-macrophage inflammatory functions. Infect Immun 1985, 49:731–741.

    PubMed  CAS  Google Scholar 

  17. Yipp BG, Andonegui G, Howlett CJ, et al.: Profound differences in leukocyte endothelial cell responses to lipopolysaccharide versus lipoteichoic acid. J Immunol 2002, 168:4650–4658.

    PubMed  CAS  Google Scholar 

  18. Bone RC: Gram-positive organisms and sepsis. Arch Intern Med 1994, 154:26–34.

    Article  PubMed  CAS  Google Scholar 

  19. Kotb M: Bacterial pyrogenic exotoxins as superantigens. Clin Microbiol Rev 1995, 8:411–426.

    PubMed  CAS  Google Scholar 

  20. Fast DJ, Schlievert PM, Nelson RD: Toxic shock syndrome associated staphylococcal and streptococcal pyrogenic toxins are potent inducers of tumor necrosis factor production. Infect Immun 1989, 57:291–294.

    PubMed  CAS  Google Scholar 

  21. Stuber F, Petersen M, Bokelmann F, et al.: Agenomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit Care Med 1996, 24:381–384.

    Article  PubMed  CAS  Google Scholar 

  22. Mundy LM, Sahm DF, Gilmore M: Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev 2000, 13:512–522. This is a comprehensive review of basic scientific and clinical evidence on the interaction of enterococcal virulence and antimicrobial resistance properties.

    Article  Google Scholar 

  23. Chow JW, Thal LA, Perri MB, et al.: Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother 1993, 37:2474–2477.

    PubMed  CAS  Google Scholar 

  24. Ike Y, Hashimoto H, Clewell DB: High incidence of hemolysin production by Enterococcus faecalis strains associated with human parenteral infections. J Clin Microbiol 1987, 25:1524–1528.

    PubMed  CAS  Google Scholar 

  25. Huycke M, Spiegel CA, Gilmore MS: Bacteremia caused by hemolytic, high level gentamicin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 1991, 35:1626–1634.

    PubMed  CAS  Google Scholar 

  26. Kreft B, Marre R, Schramm U, et al.: Aggregation substance of Enterococcus faecalis mediates adhesions to cultured renal tubular cells. Infect Immun 1992, 60:25–30.

    PubMed  CAS  Google Scholar 

  27. Gutschik E, Moller S, Christensen N: Experimental endocarditis in rabbits. Significance of the proteolytic capacity of the infecting strains of Streptococcus faecalis. Acta Pathol Microbiol Scand 1979, 87:353–362.

    CAS  Google Scholar 

  28. Shankar N, Lockatell CV, Baghdayan AS, et al.: Infectionderived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immun 1999, 67:193–200.

    PubMed  CAS  Google Scholar 

  29. Vergis EN, Shankar N, Chow JW, et al.: Association between the presence of enterococcal virulence factors gelatinase, hemolysin, and enterococcal surface protein and mortality among patients with bacteremia due to Enterococcus faecalis. Clin Infect Dis 2002, 35:570–575. This is the largest prospective study analyzing the relationship between enterococcal virulence factors and clinical outcome. This careful analysis compared nonsurvivors and survivors of E. faecalis bacteremia and was unable to demonstrate a significant relationship between established enterococcal virulence factors and mortality.

    Article  PubMed  CAS  Google Scholar 

  30. Weinstein WM, Onderdonk AB, Bartlett JG, et al.: Experimental intra-abdominal abscesses in rats: development of an experimental model. Infect Immun 1974, 10:1250–1255.

    PubMed  CAS  Google Scholar 

  31. Onderdonk AB, Bartlett JG, Louie T, et al.: Microbial synergy in experimental intra-abdominal abscess. Infect Immun 1976, 13:22–26.

    PubMed  CAS  Google Scholar 

  32. Nichols RL, Smith JW, Fossedal EN, et al.: Efficacy of parenteral antibiotics in the treatment of experimentally induced intraabdominal sepsis. Rev Infect Dis 1979, 1:302–309.

    PubMed  CAS  Google Scholar 

  33. Matlow AG, Bohnen JM, Nohr C, et al.: Pathogenicity of enterococci in a rat model of fecal peritonitis. J Infect Dis 1989, 160:142–145.

    PubMed  CAS  Google Scholar 

  34. Barke RA, Dunn DL, Dalmasso A, et al.: Enterococcal sepsis and lung microvascular injury in sheep. Arch Surg 1990, 125:437–440.

    PubMed  CAS  Google Scholar 

  35. Meleney FL, Harvey HD, Zaytseff-Jern H: Peritonitis II. Synergism of bacteria commonly found in peritoneal exudates. Arch Surg 1932, 25:709–721.

    Google Scholar 

  36. Miyakaki S, Fujikawa T, Kobayashi I, et al.: Development of systemic bacteremia after oral inoculation of vancomycin resistant enterococci in mice. J Med Microbiol 2001, 50:695–701. This murine model illustrates the role of antimicrobial selective factors and immunosuppression as important cofactors that amplify the invasiveness of enterococci and is an accurate analogy to human enterococcal infection.

    Google Scholar 

  37. Dougherty SH, Flohr AB, Simmons RL: Breakthrough enterococcal bacteremia in surgical patients. Arch Surg 1983, 118:232–238.

    PubMed  CAS  Google Scholar 

  38. Jones WG, Barrie PS, Yurt RW, et al.: Enterococcal burn sepsis: a highly lethal complication in severely burned patients. Arch Surg 1986, 121:649–653.

    PubMed  CAS  Google Scholar 

  39. Linden PK, Pasculle AW, Manez R, et al.: Differences in outcomes for patients with bacteremia due to vancomycin-resistant Enterococcus faecium or vancomycin-susceptible E. faecium. Clin Infect Dis 1996, 22:663–670.

    PubMed  CAS  Google Scholar 

  40. Bryan CS, Reynolds KL, Brown JJ: Mortality associated with enterococcal bacteremia. Surg Gyn Obstetrics 1985, 160:557–561.

    CAS  Google Scholar 

  41. Landry SL, Kaiser DL, Wenzel RP: Hospital stay and mortality attributed to nosocomial enterococcal bacteremia. A controlled study. Am J Infect Control 1989, 17:323–329.

    Article  PubMed  CAS  Google Scholar 

  42. Caballero-Granado FJ, Becerril B, Cuberos L, et al.: Attributable mortality rate and duration of hospital stay associated with enterococcal bacteremia. Clin Infect Dis 2001, 32:587–594. This is a recent, large case-controlled study showing that enterococcal bacteremia culminating in septic shock is an independent risk factor for mortality.

    Article  PubMed  CAS  Google Scholar 

  43. Hoge CW, Adams J, Buchanan B, et al.: Enterococcal bacteremia: to treat or not to treat, a reappraisal. Rev Infect Dis 1991, 13:600–605.

    PubMed  CAS  Google Scholar 

  44. Noskin GA, Till M, Patterson BK, et al.: High-level gentamicin resistance in Enterococcus faecalis bacteremia. J Infect Dis 1991, 164:1212–1215.

    PubMed  CAS  Google Scholar 

  45. Noskin GA, Peterson LR, Warren JR: Enterococcus faecium and Enterococcus faecalis bacteremia: acquisition and outcome. Clin Infect Dis 1995, 20:296–301.

    PubMed  CAS  Google Scholar 

  46. Shay DK, Maloney SA, Montecalvo M, et al.: Epidemiology and mortality risk of vancomycin-resistant enterococcal bloodstream infections. J Infect Dis 1995, 173:993–1000.

    Google Scholar 

  47. Lucas GM, Lechtzin N, Wonder D, et al.: Vancomycin-resistant and vancomycin-susceptible enterococcal bacteremia: comparison of clinical features and outcomes. Clin Infect Dis 1998, 26:1127–1133.

    PubMed  CAS  Google Scholar 

  48. Garbutt JM, Ventrapragada M, Littenberg B, et al.: Association between resistance to vancomycin and death in cases of Enterococcus faecium bacteremia. Clin Infect Dis 2000, 30:466–472.

    Article  PubMed  CAS  Google Scholar 

  49. Bhavnani SM, Drake JA, Forrest A, et al.: A nationwide, multicenter, case-control study comparing risk factors, treatment, and outcome for vancomycin-resistant and -susceptible enterococcal bacteremia. Diagn Microbiol Infect Dis 2000, 36:145–158.

    Article  PubMed  CAS  Google Scholar 

  50. Lodise TP, McKinnon PS, Tam VH, et al.: Clinical outcomes for patients with bacteremia caused by vancomycin-resistant Enterococcus in a level 1 trauma center. Clin Infect Dis 2002, 34:922–929.

    Article  PubMed  Google Scholar 

  51. Opal SM, Garber GE, LeRose SP, et al.: Systemic host responses in severe sepsis analyzed by causative microorganism and treatment effects of drotrecogin alfa. Clin Infect Dis 2003, 37:50–58. This is a separate analysis of the original randomized placebo-controlled trial of activated protein C in sepsis which emphasizes the relationship of outcome based on the inciting microbial etiology. This is the only major sepsis trial that carried out this type of detailed analysis.

    Article  PubMed  CAS  Google Scholar 

  52. Abraham E, Anzueto A, Gutierrez G, et al.: Double-blind randomized controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. Lancet 1998, 351:929–933.

    PubMed  CAS  Google Scholar 

  53. Warren BL, Eid A, Singer P, et al.: High dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 2001, 286:1869–1878.

    Article  PubMed  CAS  Google Scholar 

  54. Fisher CJ Jr, Dhainaut JR, Opal SM, et al.: Recombinant human interleukin-1 receptor antagonist in the treatment of patients with sepsis syndrome. Results of a double blind, randomized, placebo-controlled trial. Phase III rh IL-1ra Sepsis Syndrome Study Group. JAMA 1994, 271:1836–1843.

    Article  PubMed  Google Scholar 

  55. Fisher CJ Jr, Agosti JM, Opal SM, et al.: Treatment of septic shock with the tumor necrosis factor Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N Engl J Med 1996, 334:1697–1702.

    Article  PubMed  CAS  Google Scholar 

  56. Annane D, Sebille V, Charpentier C, et al.: Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortliaty in patients with septic shock. JAMA 2002, 288:862–871.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linden, P. Can enterococcal infections initiate sepsis syndrome?. Curr Infect Dis Rep 5, 372–378 (2003). https://doi.org/10.1007/s11908-003-0016-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-003-0016-8

Keywords

Navigation