Skip to main content

Advertisement

Log in

The use of urine and self-obtained vaginal swabs for the diagnosis of sexually transmitted diseases

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Studies have reported that self-collected specimens, such as urine or vaginal swabs, can be successfully used to diagnose sexually transmitted infections when they are used with nucleic acid amplification assays. This eliminates the necessity for a clinician-performed pelvic examination for women, or a urethral swab for men, for sample collection. These nucleic acid amplification assays used with selfcollected specimens are highly sensitive and specific, and their use may be extended to broad nonclinic screening venues, where their use can augment public health programs designed to control the epidemic of sexually transmitted diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. WestromLV: Sexually transmitted diseases and infertility. STD 1994, 21:S32-S37.

    CAS  Google Scholar 

  2. WestromL: Effect of pelvic inflammatory disease on fertility. Venereology 1995, 8:219–222.

    PubMed  CAS  Google Scholar 

  3. Hillis SD, Joesoef R, Marchbanks PA, et al.: Delayed care of pelvic inflammatory disease as a risk factor impared fertility. Am J Obstet Gynecol 1993, 168:1503–1509.

    PubMed  CAS  Google Scholar 

  4. Hillis SD, Wasserheit JN: Screening for Chlamydia a key to the prevention of pelvic inflammatory disease. N Engl J Med 1996, 334:1399–1401.

    Article  PubMed  CAS  Google Scholar 

  5. Anttila A, Saikku P, Koskela P, et al.: Serotypes of Chlamydia trachomatis and risk for development of cervical squamous cell carcinoma. JAMA 2001, 285:47–51. Chlamydia trachomatis serotype G is most strongly associated with subsequent development of cervical squamous cell carcinoma. The results of this study strengthen the evidence that there is a link between past chlamydia infection and cervical squamous cell carcinoma.

    Article  PubMed  CAS  Google Scholar 

  6. Laga M, Manoka A, Kivuvu M, et al.: Non-ulcerative sexually transmitted diseases as risk factors for HIV-1 transmission in women: results from a cohort study. AIDS 1993, 7:95–102.

    Article  PubMed  CAS  Google Scholar 

  7. Eng TR, Butler WT: The neglected health and economic impact of STDs. In The Hidden Epidemic, Confronting Sexually Transmitted Diseases. Edited by Eng TR, Butler WT. Washington, DC: National Academy Press; 1997:28–68. This Institute of Medicine Report proposes a national campaign to promote healthy sexual behaviors by making the public and health professionals more aware of sexually transmitted diseases and the economic burden they present to the United States.

    Google Scholar 

  8. Gaydos CA, Howell MR, Quinn TC, et al.: Use of ligase chain reaction with urine versus cervical culture for detection of Chlamydia trachomatis in an asymptomatic military population of pregnant and non-pregnant females attending Papanicolaou smear clinics. J Clin Microbiol 1998, 36:1300–1304.

    PubMed  CAS  Google Scholar 

  9. Gaydos CA, Howell MR, Pare B, et al.: Chlamydia trachomatis infections in female military recruits. N Engl J Med 1998, 339:739–744. A large national study screening young women joining the military from all 50 states that showed an overall prevalence of 9.2% with a peak of 12.2% in 17-year-old recruits. This study demonstrated that recruits from the states in the South had prevalences of greater than 15%, while States in the West, where chlamydia control programs have been effect for many years, demonstrated prevalences of less than 5%.

    Article  PubMed  CAS  Google Scholar 

  10. Marrazzo JM, White CL, Krekeler B, et al.: Community-based urine screening for Chlamydia trachomatis with a ligase chain reaction assay. Ann Intern Med 1997, 127:796–803.

    PubMed  CAS  Google Scholar 

  11. Lee HH, Chernesky MA, Schachter J, et al.: Diagnosis of Chlamydia trachomatis genitourinary infection in women by ligase chain reaction assay of urine. Lancet 1995, 345:213–216.

    Article  PubMed  CAS  Google Scholar 

  12. Smith KR, Ching S, Lee H, et al.: Evaluation of ligase chain reaction for use with urine for identification of Neisseria gonorrhoeae in females attending a sexually transmitted disease clinic. J Clin Microbiol 1995, 33:455–457.

    PubMed  CAS  Google Scholar 

  13. Chernesky MA, Jang D, Lee H, et al.: Diagnosis of Chlamydia trachomatis infections in men and women by testing first-void urine by ligase chain reaction. J Clin Microbiol 1994, 32:2682–2685.

    PubMed  CAS  Google Scholar 

  14. Schachter J, Whidden R, Shaw H, et al.: Noninvasive tests for diagnosis of Chlamydia trachomatis infection applications of LCR to first-catch specimen of women. J Infect Dis 1995, 172:1411–1414.

    PubMed  CAS  Google Scholar 

  15. Polaneczky M, Quigley C, Pollock L, et al.: Use of self-collected vaginal specimens for detection of Chlamydia trachomatis infection. Obstet Gynecol 1998, 91:375–378. One of the first studies to demonstrate that self-collected vaginal swabs could be used successfully to detect chlamydia by PCR.

    Article  PubMed  CAS  Google Scholar 

  16. Gray RH, Wawer MJ, Girdner J, et al.: Use of self-collected vaginal swabs for detection of Chlamydia trachomais infection. Sex Transm Dis 1998, 25:450.

    Article  PubMed  CAS  Google Scholar 

  17. Holland SM, Gaydos CA, Quinn TC: Detection and differentiation of Chlamydia trachomatis, C. psittaci, and C. pneumoniae by DNA amplification. J Infect Dis 1990, 162:984–987.

    PubMed  CAS  Google Scholar 

  18. Jaschek G, Gaydos C, Welsh L, Quinn TC: Direct detection of Chlamydia trachomatis in urine specimens from syptomatic and asymptomatic men by using a rpid polymerase chain reaction assay. J Clin Microbiol 1993, 31:1209–1212.

    PubMed  CAS  Google Scholar 

  19. Bobo L, Coutlee F, Yolken RH, et al.: Diagnosis of Chlamydia trachomatis cervical infection by detection of amplified DNA with an enzyme immunoassay. J Clin Microbiol 1990, 28:1968–1973.

    PubMed  CAS  Google Scholar 

  20. Loeffelholz MD, Lewinski CA, Silver SR, et al.: Detection of Chlamydia trachomatis in endocervical specimens by polymerase chain reaction. J Clin Microbiol 1992, 30:2847–2851.

    PubMed  CAS  Google Scholar 

  21. Bauwens JE, Clark AM, Loeffelholz MJ, et al.: Diagnosis of Chlamydia trachomatis urethritis in men by polymerase chain reaction assay of first-catch urine. J Clin Microbiol 1993, 31:3013–3016.

    PubMed  CAS  Google Scholar 

  22. Bauwens JE, Clark AM, Stamm WE: Diagnosis of Chlamydia trachomatis endocervical infections by a commercial polymerase chain reaction assay. J Clin Microbiol 1993, 31:3023–3027.

    PubMed  CAS  Google Scholar 

  23. Mahony JB, Luinstra KE, Sellors JW, Chernesky MA: Comparison of plasmid- and chromosome-based polymerase chain reactioon assays for detecting Chlamydia trachomatis nucleic acids. J Clin Microbiol 1993, 31:1753–1758.

    PubMed  CAS  Google Scholar 

  24. Bass CA, Jungkind Dl, Silverman NS, Bondi JM: Clinical evaluation of a new polymerase chain reaction assay for detection of Chlamydia trachomatis in endocervical specimens. J Clin Microbiol 1993, 31:2648–2653.

    PubMed  CAS  Google Scholar 

  25. Quinn TC, Welsh L, Lentz A, et al.: Diagnosis by Amplicor PCR for Chlamydia trachomatis infection in urine samples from women and men attending sexually transmitted disease clinics. J Clin Microbiol 1996, 34:1401–1406.

    PubMed  CAS  Google Scholar 

  26. Dille BJ, Butzen CC, Birkenmeyer LG: Amplification of Chlamydia trachomatis DNA by ligase chain reaction. J Clin Microbiol 1993, 31:729–731.

    PubMed  CAS  Google Scholar 

  27. Gaydos CA, Jang D, Welsh LE, et al.: Ligase chain reaction (LCR): a novel DNA amplification technique for Chlamydia trachomatis (CT) in male urine. Sex Transm Dis 1994, 21:S124-S125.

    Article  Google Scholar 

  28. Schachter J, Stamm WE, Quinn TC, et al.: Ligase chain reaction (LCR) to detect Chlamydia trachomatis infection of the cervix. J Clin Microbiol 1994, 32:2540–2543.

    PubMed  CAS  Google Scholar 

  29. Chernesky MA, Lee H, Schachter J, et al.: Rapid diagnosis of Chlamydia trachomatis urethral infection in symptomatic and asymptomatic men by testing first void urine in a ligase chain reaction assay. J Infect Dis 1994, 170:1308–1311.

    PubMed  CAS  Google Scholar 

  30. Bassiri M, Hu HY, Domeika MA, et al.: Detection of Chlamydia trachomatis in urine specimens from women by ligase chain reaction. J Clin Microbiol 1995, 33:898–900.

    PubMed  CAS  Google Scholar 

  31. Gaydos CA, Ngeow YF, Lee HH, et al.: Urine as a diagnostic specimen for the detection of Chlamydia trachomatis in Malaysis by ligase chain reaction. Sex Transm Ds 1996, 23:402–406.

    Article  CAS  Google Scholar 

  32. Van Der Pol B, Quinn TC, Gaydos CA, et al.: Evaluation of the AMPLICOR and automated COBAS AMPLICOR CT/NG tests for the detection of Chlamydia trachomatis. J Clin Microbiol 2000, 38:1105–1112. A recent study that demonstrated detection of chlamydia by PCR can be automated.

    Google Scholar 

  33. Martin DH, Cammarata C, Van Der PolB, et al.: Multicenter Evaluation of AMPLICOR and automated COBAS AMPLICOR CT/NG tests for N. gonorrhoeae. J Clin Microbiol 2000, 38:3544–3549. Another recent study that demonstrated detection of gonorrhea by PCR can be automated.

    PubMed  CAS  Google Scholar 

  34. Van Der PolB, Ferrero D, Buck-Barrington L, et al.: Multicenter evaluation of the BDProbeTec ET system for the detection of Chalmydia trachomatis and Neisseria gonorrhoeae in urine specimens, female endocervical swabs, and male urethral swabs. J Clin Microbiol 2001, 39:1008–1016. A new study that reports the availability of another amplification technique, namely strand displacement amplification, which is both sensitive and specific for the detection of both chlamydia and gonorrhea.

    Article  PubMed  CAS  Google Scholar 

  35. Chlamydia trachomatis: the more you look, the more you find — how much is there?Sex Transm Dis 1998, 25:229–231.

  36. HammerschlagMR: Use of nucleic acid amplification tests in investigating child sexual abuse. Sex Transm Infect 2001, 77:153–154.

    Article  PubMed  CAS  Google Scholar 

  37. Weisenfeld HC, Lowry DLB, Heine RP, et al.: Self-collection of vaginal swabs for the detection of Chlamydia, gonorrhea, and trichomonas. Sex Transm Dis 2001, 28:321–325. This study has important information to indicate that vaginal swab testing is acceptable, feasible, and detects STDs that would not otherwise be detected because the participants would not otherwise be screened.

    Article  Google Scholar 

  38. Hook III EW, Smith K, Mullen C, et al.: Diagnosis of genitourinary Chalmydia trachomatis infections by using the ligase chain reaction on patient-obtained vaginal swabs. J Clin Microbiol 1997, 35:2133–2135.

    PubMed  Google Scholar 

  39. Stary A, Chouieri B, Lee H:Implications of sensitive molecular diagnosis of Chlamydia trachomatis in non-invasive sample types [abstract 041]. InEleventh Meeting of the Internatational Society for STD Research. New Orleans, 1995:43.

  40. Rompalo AM, Gaydos CA, Shah N, et al.: Evaluation of use of a single intravaginal swab to detect multiple sexually transmitted infections in active-duty military women. Clin Infect Dis 2001, 33:1455–1461. This manuscript reports the successful detection of multiple STDs with only one self-administered intravaginal swab by PCR technique, and is one of the first to demonstrate the successful amplification of HPV in conjunction with other STDs.

    Article  PubMed  CAS  Google Scholar 

  41. Centers for Disease Control: Laboratory Update: Isolation of Chlamydia trachomatis in Cell Culture. US Department Health Human Services; 1980.

  42. Taylor HR, Arawala N, Johnson SL: Detection of experimental Chalmydia trachomatis eye infections in conjunctival smears and in tissue cultures by use of fluorescein-conjugated antibody. J Clin Microbiol 1984, 20:391–395.

    PubMed  CAS  Google Scholar 

  43. Uyeda CT, Welborn P, Ellison-Birang N, et al.: Rapid diagnosis of chlamydial infections with Microtrak direct test. J Clin Microbiol 1984, 20:948–950.

    PubMed  CAS  Google Scholar 

  44. Lidner LE, Geerling S, Nettum JA, et al.: Identification of chlamydiae in cervical smears by immunofluorescence: technique, sensitivity, and specificity. Am J Clin Pathol 1986, 85:180–185.

    Google Scholar 

  45. Clark A, Stamm WE, Gaydos C, et al.: Multicenter evaluation of the antigEnz chlamydia enzyme immunoassay for diagnosis of Chlamydia trachomatis genital infection. J Clin Microbiol 1992, 30:2762–2764.

    PubMed  CAS  Google Scholar 

  46. Gaydos C, Reichart C, Long J, et al.: Evaluation of Syva enzyme immunoassay for detection of Chlamydia trachomatis in genital specimens. J Clin Microbiol 1990, 28:1541–1544.

    PubMed  CAS  Google Scholar 

  47. Sanders JW, Hook EW, Welsh LE, et al.: Evaluation of an enzyme immunoassay for detection of Chlamydia trachomatis in urine of asymptomatic men. J Clin Microbiol 1994, 32:24–27.

    PubMed  CAS  Google Scholar 

  48. Chan EL, Brandt K, Horsman GG: A 1-year evaluation of Syva microtrak Chlamydia enzyme immunoassay with selective confirmation by direct fluorescent-antibody assay in a high-volume laboratory. J Clin Microbiol 1994, 32:2208–2211.

    PubMed  CAS  Google Scholar 

  49. Clarke LM, Sierra MF, Daidone BJ, et al.: Comparison of the Syva MicroTrak enzyme immunoassay and Gen-Probe PACE 2 with cell culture for diagnosis of cervical Chlamydia trachomatis infection in a high-prevalence female population. J Clin Microbiol 1993, 31:968–971.

    PubMed  CAS  Google Scholar 

  50. Warren R, Dwyer B, Plackett M, et al.: Comparative evaluation of detection assays for Chlamydia trachomatis. J Clin Microbiol 1993, 31:1663–1666.

    PubMed  CAS  Google Scholar 

  51. Stary A, Teodorowicz L, Horting-Muller I, et al.: Evaluation of the gen-probe PACE 2 and the microtrak enzyme immunoassay for diagnosis of Chlamydia trachomatis in urogenital samples. Sex Transm Dis 1994, 21:26–30.

    Article  PubMed  CAS  Google Scholar 

  52. Girdner JL, Cullen AP, Salama TG, et al.: Evaluation of the Digene hybrid capture II CT-ID test for the detection of Chlamydia trachomatis in endocervical specimens. J Clin Microbiol 1999, 37:1579–1581.

    PubMed  CAS  Google Scholar 

  53. Centers for Disease Control and Prevention:Sexually Transmitted Disease Surveillance, 2000, Supplement, Chlamydia Prevalence Monitoring Project. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention; 2001.

  54. Burstein GR, Gaydos CA, Diener-West M, et al.: Incident Chlamydia trachomatis infections among inner-city adolescent females. JAMA 1998, 280:521–526.

    Article  PubMed  CAS  Google Scholar 

  55. Burstein GR, Zenilman JM, Gaydos CA, et al.: Predictors of repeat Chlamydia trachomatis infections diagnosed by DNA amplification testing among inner city females. Sex Transm Infect 2001, 77:26–32. This study demonstrated the high incidence of chlamydia infections in females and describes that age is a significant predictor.

    Article  PubMed  CAS  Google Scholar 

  56. Whittington WLH, Kent C, Kissinger P, et al.: Determinants of persistent infection and recurrent Chlamydia trachomatis infection in young women. Sex Transm Dis 2001, 28:117–123. This is an important report of findings that 13.4% of young women get reinfected or are persistently infected at a 4-month follow-up visit.

    Article  PubMed  CAS  Google Scholar 

  57. Marrazzo JM, Whittington WH, Celum CL, et al.: Urine-based screening for Chlamydia trachomatis in men attending sexually transmitted disease clinics. Sex Transm Dis 2001, 28:219–225. A large study that reported that asymptomatic men in STD clinics have a chlamydia prevalence of 5.5%, indicating a large reservoir of infection for transmission to female partners.

    Article  PubMed  CAS  Google Scholar 

  58. Cecil JA, Howell MR, Tawes JJ, et al.: Features of Chlamydia trachomatis and Neisseria gonorrhoeae infection in male army recruits. J Infect Dis 2001, 184:1216–1219. Another large study indicating a similar prevalence of 5.3% for chlamydia infection in a non-health care seeking population of young men joining the US army, demonstrating the need to screen men as well as women in chlamydia control programs.

    Article  PubMed  CAS  Google Scholar 

  59. Chen H, Macaluso M, Vermund SH, Hook IEW: Relative accuracy of nucleic acid amplification tests and culture in detecting chlamydia in asymptomatic men. J Clin Microbiol 2001, 39:3927–3937.

    Article  Google Scholar 

  60. Mertz KJ, McQuillin GM, Levine WC, et al.: A pilot study of the prevalence of chlamydial infection in a national household survey. Sex Transm Dis 1998, 25:225–228.

    Article  PubMed  CAS  Google Scholar 

  61. Ching S, Lee H, Hook III EW, et al.: Ligase chain reaction for detection of Neisseria gonorrhoeae in urogenital swab. J Clin Microbiol 1995, 33:3111–3114.

    PubMed  CAS  Google Scholar 

  62. Birkenmeyer L, Armstrong AS: Preliminary evaluation of the ligase chain reaction for specific detection of Neisseria gonorrhoeae. J Clin Microbiol 1992, 30:3089–3094.

    PubMed  CAS  Google Scholar 

  63. Koumans EH, Johnson RE, Knapp JS, St Louis ME: Laboratory testing for Neisseria gonorrhoeae by recently introduced nonculture tests: A performance review with clinical and public health considerations. Clin Infect Dis 1998, 27:1171–1180.

    PubMed  CAS  Google Scholar 

  64. Hook III EW, Handsfield HH: Gonococcal infections in the adult. In Sexually Transmitted Diseases, 2nd end. Edited by Holmes KK,Mardh P, Sparling PF, et al. New York: McGraw-Hill; 1990:149–165.

    Google Scholar 

  65. Roongpisuthipong A, Lewis JS, Kraus SJ, Morse SA: Gonococcal urethritis diagnosed from enzyme immunoassay of urine sediment. Sex Transm Dis 1988, 15:192–195.

    Article  PubMed  CAS  Google Scholar 

  66. KnappJS: Historical perspectives and identification of Neisseria and related species. Clin Microbiol Rev 1988, 1:415–431.

    PubMed  CAS  Google Scholar 

  67. Knapp JS, Rice RJ: Neisseria and Branamella. In Manual of Clinical Microbiology, edn 6. Edited by Murray PR, Baron EJ, Pfaller MA, et al. Washington, DC: ASM Press; 1995:324–340.

    Google Scholar 

  68. Iwen PC, Walker RA, Warren KL, et al.: Evaluation of nucleic acid-based test (PACE 2C) for simultaneous detection of chlamydia trachomatis and Neisseria gonorrhoeae in endocervical specimens. J Clin Microbiol 1995, 33:2587–2591.

    PubMed  CAS  Google Scholar 

  69. Stary A, Kopp W, Zahel B, et al.: Comparison of DNA-probe test and culture for the detection of Neisseria gonorrhoeae in genital samples. STD 1993, 20:243–247.

    CAS  Google Scholar 

  70. Hale YM, Melton ME, Lewis JS, Willis DE: Evaluation of the PACE 2 Neisseria gonorrhoeae assay by three public health laboratories. J Clin Microbiol 1993, 31:451–453.

    PubMed  CAS  Google Scholar 

  71. Limberger RJ, Biega R, Evancoe A, et al.: Evaluation of culture and the Gen-Probe PACE 2 assay for detection of Neisseria gonorrhoeae and Chlamydia trachomatis in endocervical specimens transported to a state health laboratory. J Clin Microbiol 1992, 30:1162–1166.

    PubMed  CAS  Google Scholar 

  72. Vlaspolder F, Mutsaers JA, Blog F, Notowicz A: Value of a DNA probe assay (Gen-Probe) compared with that of culture for the diagnosis of gonococcal infection. J Clin Mircobiol 1993, 31:107–110.

    CAS  Google Scholar 

  73. Mehta SD, Rothman RE, Kelen GD, et al.: Unsuspected gonorrhea and chlamydia in patients of an urban adult emergency department. A critical population for STD control. Sex Transm Dis 2001, 28:33–39. An important study that demonstrated that emergency departments are convenient and important sites in which to screen patients for STDs. A prevalence of 13.6% for either chlamydia or gonorrhea in 18- to 31-year-old persons was found.

    Article  PubMed  CAS  Google Scholar 

  74. Turner CF, Rogers SM, Miller HG, et al.: Untreated gonococcal and chlamydial infection in a probability sample of adults. JAMA 2002, 287:726–733.

    Article  PubMed  Google Scholar 

  75. Rietmeijer CA, Bull SS, Oritiz CG, et al.: Patterns of general health care and STD services use among high-risk youth in Denver participating in community-based urine chlamydia screening. Sex Transm Dis 1998, 25:457–463.

    Article  PubMed  CAS  Google Scholar 

  76. Gunn RA, Podschun GD, Fitzgerald S, et al.: Screening highrisk adolescent males for Chlamydia trachomatis infection. Sex Transm Dis 1998, 25:49–52.

    Article  PubMed  CAS  Google Scholar 

  77. Shew ML, Remafedi GJ, Bearinger LH, et al.: The validity of self-reported condom use among adolescents. Sex Transm Dis 1997, 24:503–510.

    Article  PubMed  CAS  Google Scholar 

  78. Cohen DA, Nsuami M, Etame RB, et al.: A school-based chlamydia control program using DNA amplification technology. Pediatrics 1998, 101:E1. An important chlamydia control program that targeted adolescents in school settings by using urine samples and testing by ligase chain reaction.

    Article  PubMed  CAS  Google Scholar 

  79. Burstein GR, Waterfield G, Joffe A, et al.: Screening for gonorrhea and chlamydia by DNA amplification in adolescents attending middle school health centers: opportunity for early intervention. Sex Transm Dis 1998, 25:395–402.

    Article  PubMed  CAS  Google Scholar 

  80. Rietmeijer CA, Yamaguchi KJ, Ortiz CG, et al.: Feasibility and yield of screening urine for Chlamydia trachomatis by polymerase chain reaction among high-risk male youth in field-based and other nonclinic settings. A new strategy for sexually transmitted disease control. Sex Transm Dis 1997, 24:429–435.

    Article  PubMed  CAS  Google Scholar 

  81. Klausner JD, MacFarland W, Bolan G, et al.: A populationbased survey of risk behavior, health care, access, and Chlamydia trachomatis infection among low-income women in the San Francisco Bay area. J Infect Dis 2001, 183:1087–1092. An important study that demonstrates that there are more infections in the community than routine surveillance indicates, and that by partnering with other health care providers, screening programs may achieve more success.

    Article  PubMed  CAS  Google Scholar 

  82. Oh MK, Smith KR, O’Cain M, et al.: Urine-based screening of adolescents in detention to guide treatment for gonococcal and chlamydial infections. Arch Pediatr Adolesc Med 1998, 152:52–56.

    PubMed  CAS  Google Scholar 

  83. Centers for Disease Control and Prevention: High prevalence of chlamydial and gonococcal infection in women entering jails and juvenile detention centers-Chicago, Birmingham, and San Francisco. MMWR 1999, 48:793–796.

    Google Scholar 

  84. GlaserJB: Sexually transmitted diseases in the incarcerated: an underexploited public health opportunity. Sex Transm Dis 1998, 25:308–309.

    Article  PubMed  CAS  Google Scholar 

  85. Risser JMH, Risser WL, Gefter LR, et al.: Implementation of a screening program for chlamydial infection in incarcerated adolescents. Sex Transm Dis 2001, 28:43–46.

    Article  PubMed  CAS  Google Scholar 

  86. Mertz KJ, Schwebke JR, Gaydos CA, et al.:Screening women in jails for chlamydial and gonococcal infection: acceptability, prevalence, and treatment rates. Sex Transm Dis 2002, 29:In press. This study demonstrated the acceptability of screening women in jails and reported a prevalence of 15.3% to 21.5% for chlamydia and 8.2% to 9.2% for gonorrhea in women younger than 25 years of age.

  87. SkolnickAA: Look behind bars for key to control of STDs. JAMA 1998, 279:97–98.

    Article  PubMed  CAS  Google Scholar 

  88. Gaydos CA, Hardick J, Willard N, et al.: Screening asymptomatic males for C. trachomatis and N. gonorrhoeae in a detention center setting. Proceedings of the 14th meeting of the International Society for STD Research. Berlin, Germany. June 24–27, 2001.

  89. Mehta SD, Rothman RE, Kelen GD, et al.: Clinical aspects of diagmosis of gonorrhea and Chlamydia infection in an acute care setting. Clin Infect Dis 2001, 32:655–659.

    Article  PubMed  CAS  Google Scholar 

  90. Finelli L, Schillinger JA, Wasserheit JN: Are emergency departments the next frontier for sexually transmitted disease screening? Sex Transm Dis 2001, 28:40–42.

    Article  PubMed  CAS  Google Scholar 

  91. Mertz KJ, Levine WC, Mosure DJ, et al.: Trends in the prevalence of chlamydia infections: the impact of community-wide testing. Sex Transm Dis 1997, 24:169–175.

    Article  PubMed  CAS  Google Scholar 

  92. Gaydos CA, Crotchfelt KA, Howell MR, et al.: Molecular amplification assays to detect chlamydial infections in urine specimens from high school female students and to monitor the persistance of chlamydial DNA after therapy. J Infect Dis 1998, 177:417–424.

    PubMed  CAS  Google Scholar 

  93. Workowski KA, Lampe MF, Wong KG, et al.: Long-term eradication of Chlamydia trachomatis genital infection after antimicrobial therapy. JAMA 1993, 270:2071–2075.

    Article  PubMed  CAS  Google Scholar 

  94. Hook III EW, Ching SF, Stephens J, et al.: Diagnosis of Neisseria gonorrhoeae infections in women by using the ligase chain reaction on patient-obtained vaginal swabs. J Clin Microbiol 1997, 35:2129–2132.

    PubMed  Google Scholar 

  95. Gaydos CA, Crotchfelt KA, Shah N, et al.: Evaluation of dry and wet transported intravaginal swabs in detection of Chlamydia trachomatis and Neisseria gonorrhoeae infections in female soldiers by PCR. J Clin Microbiol 2002, 40:In press. This manuscript reported that vaginal swabs can be transported to the laboratory in a dry state for amplification by PCR, thus opening the possibility of ease of transport systems, such as the mail.

  96. Howell MR, Quinn TC, Brathwaite W, Gaydos CA: Screening women for Chlamydia trachomatis in family planning clinics: the cost-effectiveness of DNA amlplification ssays. Sex Transm Dis 1998, 25:108–117.

    Article  PubMed  CAS  Google Scholar 

  97. Howell MR, Quinn TC, Gaydos CA: Screening for Chlamydia trachomatis in asymptomatic women attending family planning clinics: a cost effectiveness analysis of three preventive strategies. Ann Intern Med 1998, 128:277–284.

    PubMed  CAS  Google Scholar 

  98. Howell MR, Gaydos JC, McKee JKT, et al.: Control of Chlamydia trachomatis in female Army recruits: cost-effective screening and treatment to prevent pelvic inflammatory disease. Sex Transm Dis 1999, 26:519–526.

    Article  PubMed  CAS  Google Scholar 

  99. Peeling RW, Toye B, Jessamine P, Gemmill I: Pooling of urine specimens for PCR testing: a cost saving strategy for Chlamydia trachomatis control programmes. Sex Transm Infect 1998, 74:66–70. This article reports the accuracy of pooling urine samples as a cost savings method.

    Article  PubMed  CAS  Google Scholar 

  100. Kacena KA, Quinn SB, Howell MR, et al.: Pooling urine samples for ligase chain reaction screening for genital Chlamydia trachomatis infections in asymptomatic women. J Clin Microbiol 1998, 36:481–485. This study is the first report of the accuracy of using pooling urine samples for a cost savings method for LCR. Formulas are presented to allow for the computation of the best number to pool for the highest cost savings.

    PubMed  CAS  Google Scholar 

  101. Clark AM, Steece R, Crouse K, et al.: Multisite pooling study using ligase chain reaction in screening for genital Chlamydia trachomatis infections. Sex Transm Dis 2001, 28:565–568.

    Article  PubMed  CAS  Google Scholar 

  102. Kacena KA, Quinn SB, Hartman SC, et al.: Pooling urine samples for the screening of Neisseria gonorrhoeae by ligase chain reaction (LCR): accuracy and application. J Clin Microbiol 1998, 36:3624–3628. This report demonstrates the accuracy of pooling urine samples for cost savings in the detection of gonorrhea.

    PubMed  CAS  Google Scholar 

  103. Kapala J, Copes D, Sproston A, et al.: Pooling cervical swabs and testing by ligase chain reaction are accurate and costsaving strategies for diagnosis of Chlamydia trachomatis. J Clin Microbiol 2000, 38:2480–2483.

    PubMed  CAS  Google Scholar 

  104. Morre SA, Meijier CJLM, Munk C, et al.: Pooling of urine specimens for detection of asymptomatic Chlamydia trachomatis infections by PCR in a low-prevalence population: cost saving strategy for epidemiological studies and screening programs. J Clin Microbiol 2000, 38:1679–1680.

    PubMed  CAS  Google Scholar 

  105. Brodine SK, Shafer MA, Shaffer RA, et al.: Asymptomatic sexually transmitted disease prevalence in four military populations: Application of DNA amplification assays for Chlamydia and gonorrhea screening. J Infect Dis 1998, 178:1202–1204.

    PubMed  CAS  Google Scholar 

  106. Howell MR, McKee JKT, Gaydos JC, et al.: Point-of-entry screening for C. trachomatis in female army recruits: Who derives the cost savings? Am J Prev Med 2000, 19:160–166. This study demonstrates that cost savings can be shared among the military as well as the civilian health care sector when military recruit screening serves as a capture point for screening young women. It points out the necessity for partnering of diverse health care groups for the effective control of chlamydia in young women in the United States.

    Article  PubMed  CAS  Google Scholar 

  107. Burstein GR, Snyder MH, Conley D, et al.: Adolescent Chlamydia Testing Practices and diagnosed infections in a large managed care organization. Sex Transm Dis 2001, 28:477–483.

    Article  PubMed  CAS  Google Scholar 

  108. Ostergaard L, Anderson B, Olesen F, et al.: Efficacy of home sampling for screening of Chalmydia trachomatis: randomized study. BMJ 1998, 317:26–27.

    PubMed  CAS  Google Scholar 

  109. Harper DM, Hildesheim A, Cobb JL, et al.: Collection devices for human papillomaviruses. J Fam Pract 1999, 48:531–535.

    PubMed  CAS  Google Scholar 

  110. Harper DM, Noll WW, Belloni D, Cole B: Comparison of selfdirected swabs and tampons to physician-directed sampling for human papillomavirus testing by PCR: biological concordance and women’s preferences [abstract]. Paper presented at Proceedings of the 18th International Papillomavirus Conference. Barcelona. July 24–28 2000.

  111. Hillemans P, Kimmig R, Huttemann U, et al.: Screening for cervical neoplasia by self-assessment for human papillomavirus DNA [abstract]. Lancet 1999, 354:1970.

    Article  Google Scholar 

  112. Wright TC, Denney L, Kukn L, et al.: HPV DNA testing of selfcollected vaginal samples compared with cytologic screening to detect cervical cancer. JAMA 2000, 283:81–86.

    Article  PubMed  Google Scholar 

  113. Salmeron J, Lazcano EC, Hernandez M, et al.: Evaluation of a high-risk HPV assay on self-sampled vaginal specimens as an alternative for cervical cancer screening in Morelos, Mexico [abstract]. Paper presented at Proceedings of the 18th International Papillomavirus Conference. Barcelona. July 24–28, 2000.

  114. Shah KV, Daniel RW, Tennant MK, et al.: Diagnosis of human papillomavirus infection by dry vaginal swabs in military women. Sex Transm Infect 2001, 77:260–264. This study reports the accuracy of dry transport of vaginal swabs for the PCR detection of HPV.

    Article  PubMed  CAS  Google Scholar 

  115. Heine RP, Wiesenfeld HC, Sweet RL, Witkin SS: Polymerase chain reaction analysis of distal vaginal specimens: a less invasive strategy for detection of Trichomonas vaginalis. Clin Infect Dis 1997, 24:985–987.

    PubMed  CAS  Google Scholar 

  116. Wawer MJ, McNairn D, Wabwire-Mangen F, et al.: Self-administered vaginal swabs for population-based assessment of Trichomanas vaginalis prevalence. Lancet 1995, 345:131–132.

    Article  PubMed  CAS  Google Scholar 

  117. Witkin SS, Inglis SR, Polaneczky M: Detection of Chlamydia trachomatis and Trichomonas vaginalis by polymerase chain reaction in introital specimens from pregnant women. Am J Obstet Gynecol 1996, 175:165–167.

    Article  PubMed  CAS  Google Scholar 

  118. KentHL: Epidemiology of vaginitis. Am J Obstet Gynecol 1991, 165:1168–1176.

    PubMed  CAS  Google Scholar 

  119. Madico G, Quinn TC, Rompalo A, et al.: Detection of Trichomonas vaginalis infection by polymerase chain reaction (PCR). J Clin Microbiol 1998, 36:3205–3210.

    PubMed  CAS  Google Scholar 

  120. Riley D, Roberts M, Takayama T, Krieger JN: Development of a polymerase chain reaction-based diagnosis of Trichomonas vaginalis. J Clin Microbiol 1992, 30:465–472.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaydos, C.A., Rompalo, A.M. The use of urine and self-obtained vaginal swabs for the diagnosis of sexually transmitted diseases. Curr Infect Dis Rep 4, 148–157 (2002). https://doi.org/10.1007/s11908-002-0057-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-002-0057-4

Keywords

Navigation