Skip to main content

Advertisement

Log in

Molecular aspects of myocarditis

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Myocarditis is an acquired form inflammatory heart muscle disease, manifested as acute and chronic conditions. While many etiologies have been reported, the most common cause of this disease is infection, primarily viral. Typically, the specific causative agent(s) and mechanism(s) are elusive. Over the past several years, various new findings have added to our understanding of myocarditis. These include the identification of adenoviruses as important causative agents, a new receptor protein likely to play an important role in the virulence of certain agents affecting the myocardium, and the effect of viruses on the cardiac cytoskeleton. This report reviews the current understanding of myocarditis, proposes a hypothesis about the long-term sequelae, and suggests possible new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Sole MJ, Lui P: Viral myocarditis: a paradigm for understanding the pathogenesis and treatment of dilated cardiomyopathy. J Am Coll Cardiol 1993, 22(suppl A):99A-105A.

    Article  PubMed  CAS  Google Scholar 

  2. Chow LH, Radio SJ, Sears TD, McManus BM: Insensitivity of right ventricular endomyocardial biopsy in the diagnosis of myocarditis. J Am Coll Cardiol 1989, 14:915–920.

    Article  PubMed  CAS  Google Scholar 

  3. Martin AB, Webber S, Fricker FJ, et al.: Acute myocarditis: rapid diagnosis by PCR in children. Circulation 1994, 90:330–333.

    PubMed  CAS  Google Scholar 

  4. Schonian U, Crombach M, Maser S, Maisch B: Cytomegalovirus-associated heart muscle disease. Eur Heart J 1995, 16(suppl 0):46–49.

    PubMed  Google Scholar 

  5. Woodruff JF: Viral myocarditis: A review. Am J Pathol 1980, 101:427–479.

    Google Scholar 

  6. Berkovich S, Rodriguez-Torres R, Lin TS: Virologic studies in children with acute myocarditis. Am J Dis Child 1968; 115:207–212.

    PubMed  CAS  Google Scholar 

  7. Bowles NE, Richardson PJ, Olsen EGJ, Archard LC: Detection of coxsackie-B-virus specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet 1986, 1:1120–1122.

    Article  PubMed  CAS  Google Scholar 

  8. Jin O, Sole M, Butany J, et al.: Detection of enterovirus RNA in myocardial biopsies from patients with myocarditis and cardiomyopathy using gene amplification by polymerase chain reaction. Circulation 1990, 82:8–16.

    PubMed  CAS  Google Scholar 

  9. Griffin LD, Kearney D, Ni J, et al.: Analysis of formalin-fixed and frozen myocardial autopsy samples for viral genome in childhood myocarditis and dilated cardiomyopathy with endocardial fibroelastosis using polymerase chain reaction (PCR). J Cardiovasc Pathol 1995, 4:3–11.

    Article  CAS  Google Scholar 

  10. Ni J, Bowles NE, Kim Y-H, et al.: Viral infection of the myocardium in endocardial fibroelastotsis: Molecular evidence for the role of mumps virus as an etiological agent. Circulation 1997, 95:133–139.

    PubMed  CAS  Google Scholar 

  11. Pauschinger M, Bowles NE, Fuentes-Garcia FJ, et al.: Detection of adenovirual genome in the myocardium of adult patients with idiopathic left ventricular dysfunction. Circulation 1999, 99:1348–1354. Article demonstrates that adenoviruses and enteroviruses cause left ventricular dysfunction in adults.

    PubMed  CAS  Google Scholar 

  12. Lozinski GM, Davis GC, Krous HF, et al.: Adenovirus myocarditis: Retrospective diagnosis by gene amplification from formalin-fixed, paraffin-embedded tissues. Hum Pathol 1994, 25:831–834.

    Article  PubMed  CAS  Google Scholar 

  13. Cardosa MJ, Krishnan S, Tio PH, et al.: Isolation of subgenus B adenovirus during a fatal outbreak of enterovirus 71-associated hand, foot, and mouth disease in Sibu, Sarawak. Lancet 1999, 354:987–991. This article shows that adenovirus infection in children with enteroviral hand, foot, and mouth disease results in death.

    Article  PubMed  CAS  Google Scholar 

  14. Akhtar N, Ni J, Stromberg D, et al.: Tracheal aspirate as a substrate for polymerase chain reaction of viral genome in childhood pneumonia and myocarditis. Circulation 1999, 99:2011–2018. This article discusses the use of tracheal aspirate for viral PCR in myocarditis.

    PubMed  CAS  Google Scholar 

  15. Tu Z, Chapman NM, Hufnagel G, et al.: The cardloviruient phenotype of Coxsackievirus B3 is determined at a single site in the genomic 5′ nontranslated region. J Virol 1995, 69:4607–4618.

    PubMed  CAS  Google Scholar 

  16. Chapman NM, Romero JR, Pallansch MA, Tracy S: Sites other than nucleotide 234 determine cardioviruience in natural isolated of Coxsackievirus B3. J Med Virol 1997, 52:258–261.

    Article  PubMed  CAS  Google Scholar 

  17. Lee C, Maull E, Chapman N, et al.: Genomic regions of Coxsackievirus B3 associated with cardioviruience. J Med Virol 1997, 52:341–347.

    Article  PubMed  CAS  Google Scholar 

  18. Bergelson JM, Cunningham JA, Droguett G, et al.: Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997, 275:1320–1323. This article describes the isolation of a CDNA clone that encodes the common receptor for the Coxsackievirus B and adenovirus (subgroup C) families. The expression of this protein is capable of permitting the attachment and entry of these viruses into nonpermissive cell lines.

    Article  PubMed  CAS  Google Scholar 

  19. Tomko RP, Xu R, Philipson L: HCAR and MCAR:the human and mouse cellular receptors for subgroup C adenoviruses and group B Coxsackieviruses. Proc Natl Acad Sci U S A 1997, 94:3352–3356. This article characterizes the common receptor for the Coxsackievirus B and adenovirus (subgroup C) families from both human and mouse cells. These 46kD glycoproteins share significant homology and are part of the immunoglobulinlike receptor superfamily, having a transmembrane and two extracellular domains.

    Article  PubMed  CAS  Google Scholar 

  20. Bowles KR, Gibson J, Wu J, et al.: Genomic organization and chromosomal localization of the human coxsackievirus B-adenovirus receptor gene. Hum Genet 1999, 105:354–359. This article addresses CAR cloning, characterization and chromosomal 21 localization.

    Article  PubMed  CAS  Google Scholar 

  21. Bewley MC, Springer K, Zhang YB, Freimuth P, Flanagan JM: Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 1999;286:1579–1583. This article addresses CAR and adenovirus binding.

    Article  PubMed  CAS  Google Scholar 

  22. Wang X, Bergelson JM: Coxsackievirus and adenovirus receptor cytoplasmic and transmembrance domains are not essential for Coxsackievirus and adenovirus infection. J Virol 1999, 73:2559–2562. CAR and viral infection.

    PubMed  CAS  Google Scholar 

  23. Roelvink PW, Mi Lee G, Einfeld DA, et al.: Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 1999;286:1568–1571. CAR and adenovirus infection.

    Article  PubMed  CAS  Google Scholar 

  24. Levine B, Kalman J, Mayer L, et al.: Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990, 323:236–241.

    Article  PubMed  CAS  Google Scholar 

  25. Matsumori A, Yamada T, Suzuki H, et al.: Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br Heart J 1994, 72:561–566.

    PubMed  CAS  Google Scholar 

  26. Matsumori A: Molecular and immune mechanisms in the pathogenesis of cardiomyopathy: role of viruses, cytokines and nitric oxide. Jpn Circ J 1997, 61:275–291. This is a well written update of the field of myocarditis, particularly with reference to the role of cytokines and hepatitis C virus.

    Article  PubMed  CAS  Google Scholar 

  27. Kubota T, McTiernan CF, Frye CS, et al.: Cardiac-specific overexpression of tumor necrosis factor-alpha causes lethal myocarditis. J Card Fail 1997, 3:117–124.

    Article  PubMed  CAS  Google Scholar 

  28. Bryant D, Becker L, Richardson J, et al.: Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 1998, 97(14):1375–1381.

    PubMed  CAS  Google Scholar 

  29. Satoh M, Tamaura G, Segawa I, et al.: Expression of cytokine genes and presence of enteroviral genomic RNA in endomyocardial biopsy tissues of myocarditis and dilated cardiomyopathy. Virchows Arch 1996, 427:503–509.

    Article  PubMed  CAS  Google Scholar 

  30. Shioi T, Matsumori A, Nishio R, et al.: Protective role of interleukin-12 in viral myocarditis. J Mol Cell Cardiol 1997, 29:2327–2334.

    Article  PubMed  CAS  Google Scholar 

  31. Shioi T, Matsumori A, Sasayama S: Persistent expression of cytokine in the chronic stage of viral myocarditis in mice. Circulation 1996, 94:2930–2937.

    PubMed  CAS  Google Scholar 

  32. de Belder AJ, Radomski MW, Why HJ, et al.: Myocardial calcium-independent nitric oxide synthase activity is present in dilated cardiomyopathy, myocarditis, and postpartum cardiomyopathy but not in ischemic or valvar heart disease. Br Heart J 1995, 74:426–430.

    PubMed  Google Scholar 

  33. Mikami S, Kawashima S, Kanazawa K, et al.: Expression of nitric oxide synthase in a murine model of viral myocarditis induced by Coxsackievirus B3. Biochem Biophys Res Comm 1996, 220:983–989.

    Article  PubMed  CAS  Google Scholar 

  34. Robinson NM, Zhang HY, Bevan AL, et al.: Induction of myocardial nitric oxide synthase by Coxsackie B3 virus in mice. Eur J Clin Invest 1999, 29:700–707. This article demonstrates a mouse model of coxsackie myocarditis.

    Article  PubMed  CAS  Google Scholar 

  35. Bachmaier K, Neu N, Pummerer C, et al.: iNOS expression and nitrotyrosine formation in the myocardium in response to inflammation is controlled by the interferon regulatory transcription factor 1. Circulation 1997, 96:585–591. Inducible nitric oxide synthase (iNOS) is up-regulated in this autoimmune model of myocarditis in mice. iNOS induction is not essential for the development of myocarditis in this model because mice lacking interferon regulatory transcription factor-1, which controls iNOS induction, showed no difference in the severity of pathology, in comparison with control animals, after induction of disease.

    PubMed  CAS  Google Scholar 

  36. Ishiyama S, Hiroe M, Nishikawa T, et al.: Nitric oxide contributes to the progression of myocardial damage in experimental autoimmune myocarditis in rats. Circulation 1997, 95:489–496. In an autoimmune rat model of myocarditis, the administration of aminoguanidine (which inhibits inducible nitric oxide synthase iNOS expression) reduced the severity of inflammation in the myocardium, suggesting an important role for nitric oxide synthesis in disease pathology. This article and the previous article (35) provide contradictory information for the importance of iNOS induction in autoimmune myocarditis.

    PubMed  CAS  Google Scholar 

  37. Okura Y, Yamamoto T, Goto S, et al.: Characterization of the cytokine and iNOS mRNA expression in situ during the course of experimental autoimmune myocarditis in rats. J Mol Cell Cardiol 1997, 29:491–502.

    Article  PubMed  CAS  Google Scholar 

  38. Cohen JJ: Apoptosis. Immunol Today 1993, 14:126–130.

    Article  PubMed  CAS  Google Scholar 

  39. Narula J, Haider N, Virmani R, et al.: Apoptosis in myocytes in end-stage heart disease. N Engl J Med 1996, 335:1182–1189. This is the first demonstration of increased numbers of apoptotic cardiomyocytes in the myocardium of patients with idiopathic dilated cardiomyopathy, suggesting a novel mechanism of pathology in these patients.

    Article  PubMed  CAS  Google Scholar 

  40. Strand S, Hofmann WJ, Hug H, et al.: Lymphocyte apoptosis induced by CD95 (APO-1 /Fas) ligand-expressing tumor cells-a mechanism of immune evasion? Nat Med 1996, 2:1361–1366.

    Article  PubMed  CAS  Google Scholar 

  41. Yamada T, Matsumori A, Wang WZ, et al.: Apoptosis in congestive heart failure induced by viral myocarditis in mice. Heart Vessels 1999, 14:29–37.

    Article  PubMed  CAS  Google Scholar 

  42. White E: Regulation of apoptosis by the transforming genes of the DNA tumor virus adenovirus. Proc Soc Exp Biol Med 1993, 204:30–39.

    PubMed  CAS  Google Scholar 

  43. Huber SA: Coxsackievirus-induced myocarditis is dependent on distinct immunopathogenic responses in different strains of mice. Lab Invest 1997, 76:691–701.

    PubMed  CAS  Google Scholar 

  44. Schultheiss H-P, Schulze K, Dorner A: Significance of the adenine nucleotide translocator in the pathogenesis of viral heart disease. Mol Cell Biochem 1996, 163/164:319–327. This article offers a comprehensive description of changes in the amount and function of the adenine translocator protein in myocarditis and dilated cardiomyopathy patients. In animal models, the stimulation of autoantibodies against this protein led to decreased cardiac function associated with reduced mitochondrial transport and altered energy metabolism.

    Article  CAS  Google Scholar 

  45. Caforio ALP, Grazzini M, Mann JM, et al.: Identification of alpha- and beta-cardiac myosin heavy chain isoforms as major autoantigens in dilated cardiomyopathy. Circulation 1992, 85:1734–1742.

    PubMed  CAS  Google Scholar 

  46. Schwimmbeck PL, Schultheiss H-P, Strauer BE: Identification of a main autoimmunogenic epitope of the adenine nucleotide translocator which cross reacts with Coxsackie B3 virus: use in the diagnosis of myocarditis and dilated cardiomyopathy. Circulation 1989, 80(suppl 11):665.

    Google Scholar 

  47. Nakamura H, Yamamoto T, Yamamura T, et al.: Repetitive Coxsackievirus infection induces cardiac dilatation in post-myocarditic mice. Jpn Circ J 1999, 63:794–802.

    Article  PubMed  CAS  Google Scholar 

  48. Lauer B, Schannwell M, Kuhl U, et al.: Antimyosin autoantibodies are associated with deterioration of systolic and diastolic left ventricular function in patients with chronic myocarditis. J Am Coll Cardiol 2000; 35:11–18. This article shows that myocarditis and antimyosin antibodies result in cardiac dysfunction.

    Article  PubMed  CAS  Google Scholar 

  49. Pankuweit S, Portig I, Lottspeich F, Maisch B: Autoantibodies in sera of patients with myocarditis: characterization of the corresponding proteins by isoelectric focusing and N-terminal sequence analysis. J Mol Cell Cardiol 1997, 29:77–84.

    Article  PubMed  CAS  Google Scholar 

  50. Badorff C, Lee G-H, Lamphear BJ, et al.: Enteroviral protease 2A cleaves dystrophin: Evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 1999, 5:320–326. This article shows that enteroviral protease 2A cleaves dystrophin, leading to chronic dilated cardiomyopathy after coxsackie myocarditis.

    Article  PubMed  CAS  Google Scholar 

  51. Towbin JA, Hejtmancik JF, Brink P, et al.: X-linked dilated cardiomyopathy (XLCM): Molecular genetic evidence of linkage to the Duchenne muscular dystrophy gene at the Xp21 locus. Circulation 1993, 87:1854–1865.

    PubMed  CAS  Google Scholar 

  52. Mason JM, O’Connell JB, Herskowitz A, et al.: A clinical trial of immunosuppressive therapy for myocarditis. N Engl J Med 1995, 333:269–275.

    Article  PubMed  CAS  Google Scholar 

  53. Drucker NA, Colan SD, Lewis AB, et al.: a-globulin treatment of acute myocarditis in the pediatric population. Circulation 1994, 89:252–257.

    PubMed  CAS  Google Scholar 

  54. McNamara DM, Rosenblum WD, Janosko KM, et al.: Intravenous immune globulin in the therapy of myocarditis and acute cardiomyopathy. Circulation 1997, 95:2476–2478.

    PubMed  CAS  Google Scholar 

  55. Nishio R, Matsumori A, Shioi T, et al.: Treatment of experimental viral myocarditis with interleuekin-10. Circulation 1999, 100:1102–1108.

    PubMed  CAS  Google Scholar 

  56. Zhang HY, Morgan-Capner P, Latif N, et al.: Coxsackievirus B3-induced myocarditis: characterization of stable attenuated variants that protect against infection with the cardiovirulent wild-type strain. Am J Pathol 1997, 150:2197–2207.

    PubMed  CAS  Google Scholar 

  57. Gaydos CA: Adenovirus vaccines in the US military. Milit Med 1995, 160:300–304.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowles, N.E., Towbin, J.A. Molecular aspects of myocarditis. Curr Infect Dis Rep 2, 308–314 (2000). https://doi.org/10.1007/s11908-000-0008-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-000-0008-x

Keywords

Navigation