Skip to main content

Advertisement

Log in

Update on the Use of Pulse Wave Velocity to Measure Age-Related Vascular Changes

  • Inflammation and Cardiovascular Diseases (A Kirabo, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pulse wave velocity (PWV) is an important and well-established measure of arterial stiffness that is strongly associated with aging. Age-related alterations in the elastic properties and integrity of arterial walls can lead to cardiovascular disease. PWV measurements play an important role in the early detection of these changes, as well as other cardiovascular disease risk factors, such as hypertension. This review provides a comprehensive summary of the current knowledge of the effects of aging on arterial stiffness, as measured by PWV.

Recent Findings

This review highlights recent findings showing the applicability of PWV analysis for investigating heart failure, hypertension, and other cardiovascular diseases, as well as cerebrovascular diseases and Alzheimer’s disease. It also discusses the clinical implications of utilizing PWV to monitor treatment outcomes, various challenges in implementing PWV assessment in clinical practice, and the development of new technologies, including machine learning and artificial intelligence, which may improve the usefulness of PWV measurements in the future.

Summary

Measuring arterial stiffness through PWV remains an important technique to study aging, especially as the technology continues to evolve. There is a clear need to leverage PWV to identify interventions that mitigate age-related increases in PWV, potentially improving CVD outcomes and promoting healthy vascular aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No new data was generated for this manuscript.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ji C, Gao J, Huang Z, Chen S, Wang G, Wu S, et al. Estimated pulse wave velocity and cardiovascular events in Chinese. Int J Cardiol Hypertens. 2020;7:100063.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vlachopoulos C, Terentes-Printzios D, Laurent S, Nilsson PM, Protogerou AD, Aznaouridis K, et al. Association of estimated pulse wave velocity with survival: a secondary analysis of SPRINT. JAMA Netw Open. 2019;2:e1912831.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vianna CA, Horta BL, Gonzalez MC, França GVA, Gigante DP, Barros FL. Association of pulse wave velocity with body fat measures at 30 y of age. Nutrition. 2019;61:38–42.

    Article  PubMed  Google Scholar 

  4. Podrug M, Šunjić B, Bekavac A, Koren P, Đogaš V, Mudnić I, et al. The effects of experimental, meteorological, and physiological factors on short-term repeated pulse wave velocity measurements, and measurement difficulties: a randomized crossover study with two devices. Front Cardiovasc Med. 2023;9:993971.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shih Y-H, Wu S-Y, Yu M, Huang S-H, Lee C-W, Jiang M-J, et al. Hypertension accelerates Alzheimer’s disease-related pathologies in pigs and 3xTg mice. Front Aging Neurosci [Internet]. 2018 [cited 2023 Jun 8];10. Available from: https://www.frontiersin.org/articles/10.3389/fnagi.2018.00073.

  6. Sutton-Tyrrell K, Najjar SS, Boudreau RM, Venkitachalam L, Kupelian V, Simonsick EM, et al. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation. 2005;111:3384–90.

    Article  PubMed  Google Scholar 

  7. The Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values.’ Eur Heart J. 2010;31:2338–50.

  8. Wu S, Jin C, Li S, Zheng X, Zhang X, Cui L, et al. Aging, arterial stiffness, and blood pressure association in Chinese adults. Hypertension. 2019;73:893–9.

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt KMT, Hansen KM, Johnson AL, Gepner AD, Korcarz CE, Fiore MC, et al. Longitudinal effects of cigarette smoking and smoking cessation on aortic wave reflections, pulse wave velocity, and carotid artery distensibility. J Am Heart Assoc. 2019;8:e013939.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Styczynski G, Cienszkowska K, Ludwiczak M, Szmigielski C. Age-related values of aortic pulse wave velocity in healthy subjects measured by Doppler echocardiography. J Hum Hypertens. 2021;35:1081–7.

    Article  CAS  PubMed  Google Scholar 

  11. Campos-Arias D, De Buyzere ML, Chirinos JA, Rietzschel ER, Segers P. Longitudinal changes of input impedance, pulse wave velocity, and wave reflection in a middle-aged population. Hypertension. 2021;77:1154–65.

    Article  CAS  PubMed  Google Scholar 

  12. Haam J-H, Kim Y-S, Cho D-Y, Chun H, Choi S-W, Lee YK, et al. Elevated levels of urine isocitrate, hydroxymethylglutarate, and formiminoglutamate are associated with arterial stiffness in Korean adults. Sci Rep. 2021;11:10180.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elzinga G, Westerhof N. Pressure and flow generated by the left ventricle against different impedances. Circ Res. 1973;32:178–86.

    Article  CAS  PubMed  Google Scholar 

  14. Ross J. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis. 1976;18:255–64.

    Article  PubMed  Google Scholar 

  15. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983;245:H773-780.

    CAS  PubMed  Google Scholar 

  16. Nichols WW, O’Rourke MF, Avolio AP, Yaginuma T, Murgo JP, Pepine CJ, et al. Effects of age on ventricular-vascular coupling. Am J Cardiol. 1985;55:1179–84.

    Article  CAS  PubMed  Google Scholar 

  17. Asanoi H, Sasayama S, Kameyama T. Ventriculoarterial coupling in normal and failing heart in humans. Circ Res. 1989;65:483–93.

    Article  CAS  PubMed  Google Scholar 

  18. Kass DA, Kelly RP. Ventriculo-arterial coupling: concepts, assumptions, and applications. Ann Biomed Eng. 1992;20:41–62.

    Article  CAS  PubMed  Google Scholar 

  19. Chen CH, Nakayama M, Nevo E, Fetics BJ, Maughan WL, Kass DA. Coupled systolic-ventricular and vascular stiffening with age: implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol. 1998;32:1221–7.

    Article  CAS  PubMed  Google Scholar 

  20. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107:714–20.

    Article  PubMed  Google Scholar 

  21. Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Heart Fail Clin. 2008;4:23–36.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vlachopoulos C, O’Rourke M, Nichols WW. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. CRC press; 2011.

  23. Davis MJ, Gore RW. Determinants of cardiac function: simulation of a dynamic cardiac pump for physiology instruction. Adv Physiol Educ. 2001;25:13–35.

    Article  CAS  PubMed  Google Scholar 

  24. Terminology and Diagnostic Criteria Committee of The Japan Society of Ultrasonics in Medicine. Standard measurement of cardiac function indexes. J Med Ultrason. 2006;33:123–7.

  25. Park JJ, Park J-B, Park J-H, Cho G-Y. Global longitudinal strain to predict mortality in patients with acute heart failure. J Am Coll Cardiol. 2018;71:1947–57.

    Article  PubMed  Google Scholar 

  26. Tona F, Zanatta E, Montisci R, Muraru D, Beccegato E, De Zorzi E, et al. Higher ventricular-arterial coupling derived from three-dimensional echocardiography is associated with a worse clinical outcome in systemic sclerosis. Pharmaceuticals (Basel). 2021;14:646.

    Article  CAS  PubMed  Google Scholar 

  27. Ikonomidis I, Aboyans V, Blacher J, Brodmann M, Brutsaert DL, Chirinos JA, et al. The role of ventricular-arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur J Heart Fail. 2019;21:402–24.

  28. Alhakak AS, Teerlink JR, Lindenfeld J, Böhm M, Rosano GMC, Biering-Sørensen T. The significance of left ventricular ejection time in heart failure with reduced ejection fraction. Eur J Heart Fail. 2021;23:541–51.

    Article  PubMed  Google Scholar 

  29. Tsao CW, Lyass A, Larson MG, Levy D, Hamburg NM, Vita JA, et al. Relation of central arterial stiffness to incident heart failure in the community. J Am Heart Assoc. 2015;4:e002189.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lopatin Y, Coats AJ. The management of heart failure in kidney and urinary tract syndromes. International Cardiovascular Forum Journal [Internet]. 2017 [cited 2022 Nov 10];10. Available from: https://icfj.journals.publicknowledgeproject.org/index.php/icfj/article/view/450.

  31. Park K-T, Kim H-L, Oh S, Lim W-H, Seo J-B, Chung W-Y, et al. Association between reduced arterial stiffness and preserved diastolic function of the left ventricle in middle-aged and elderly patients. J Clin Hypertens (Greenwich). 2017;19:620–6.

    Article  PubMed  Google Scholar 

  32. Lam CSP, Roger VL, Rodeheffer RJ, Bursi F, Borlaug BA, Ommen SR, et al. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County. Minnesota Circulation. 2007;115:1982–90.

    Article  PubMed  Google Scholar 

  33. Hundley WG, Kitzman DW, Morgan TM, Hamilton CA, Darty SN, Stewart KP, et al. Cardiac cycle-dependent changes in aortic area and distensibility are reduced in older patients with isolated diastolic heart failure and correlate with exercise intolerance. J Am Coll Cardiol. 2001;38:796–802.

    Article  CAS  PubMed  Google Scholar 

  34. Weber T. Systolic and diastolic function as related to arterial stiffness. Artery Research. 2010;4:122–7.

    Article  Google Scholar 

  35. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure–abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350:1953–9.

    Article  CAS  PubMed  Google Scholar 

  36. Weber T. The role of arterial stiffness and central hemodynamics in heart failure. Int J Heart Fail. 2020;2:209–30.

    Article  PubMed  PubMed Central  Google Scholar 

  37. El Fol A, Ammar W, Sharaf Y, Youssef G. The central arterial stiffness parameters in decompensated versus compensated states of heart failure: a paired comparative cohort study. Egypt Heart J. 2022;74:2.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Regnault V, Lagrange J, Pizard A, Safar ME, Fay R, Pitt B, et al. Opposite predictive value of pulse pressure and aortic pulse wave velocity on heart failure with reduced left ventricular ejection fraction: insights from an eplerenone post–acute myocardial infarction heart failure efficacy and survival study (EPHESUS) substudy. Hypertension. 2014;63:105–11.

    Article  CAS  PubMed  Google Scholar 

  39. Dohaei A, Taghavi S, Amin A, Rahimi S, Naderi N. Does aortic pulse wave velocity have any prognostic significance in advanced heart failure patients? J Cardiovasc Thorac Res. 2017;9:35–40.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Antohi E, Chioncel O. Understanding cardiac systolic performance beyond left ventricular ejection fraction. Explor Med. 2020;1:75–84.

    Article  Google Scholar 

  41. Mitchell GF. Arterial stiffness and hypertension. Hypertension. 2014;64:210–4.

    Article  CAS  PubMed  Google Scholar 

  42. Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308:875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Le VP, Knutsen RH, Mecham RP, Wagenseil JE. Decreased aortic diameter and compliance precedes blood pressure increases in postnatal development of elastin-insufficient mice. Am J Physiol Heart Circ Physiol. 2011;301:H221–9.

  44. Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KRC, Xiao L, et al. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest. 2016;126:50–67.

    Article  PubMed  Google Scholar 

  45. O’Rourke MF, Mancia G. Arterial stiffness. J Hypertens. 1999;17:1.

    Article  PubMed  Google Scholar 

  46. McEniery CM, Spratt M, Munnery M, Yarnell J, Lowe GD, Rumley A, et al. An analysis of prospective risk factors for aortic stiffness in men. Hypertension. 2010;56:36–43.

    Article  CAS  PubMed  Google Scholar 

  47. Stewart AD, Jiang B, Millasseau SC, Ritter JM, Chowienczyk PJ. Acute reduction of blood pressure by nitroglycerin does not normalize large artery stiffness in essential hypertension. Hypertension. 2006;48:404–10.

    Article  CAS  PubMed  Google Scholar 

  48. Avolio AP, Clyde KM, Beard TC, Cooke HM, Ho KK, O’Rourke MF. Improved arterial distensibility in normotensive subjects on a low salt diet. Arteriosclerosis: An Official Journal of the American Heart Association, Inc. 1986;6:166–9.

  49. Benetos A, Xiao YY, Cuche JL, Hannaert P, Safar M. Arterial effects of salt restriction in hypertensive patients. A 9-week, randomized, double-blind, crossover study. J Hypertens. 1992;10:355–60.

  50. Herrera VL, Decano JL, Giordano N, Moran AM, Ruiz-Opazo N. Aortic and carotid arterial stiffness and epigenetic regulator gene expression changes precede blood pressure rise in stroke-prone Dahl salt-sensitive hypertensive rats. PLoS ONE. 2014;9:e107888.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  51. Laffer CL, Scott RC, Titze JM, Luft FC, Elijovich F. Hemodynamics and salt-and-water balance link Sodium storage and vascular dysfunction in salt-sensitive subjects. Hypertension. 2016;68:195–203.

    Article  CAS  PubMed  Google Scholar 

  52. Belohlavek M, Jiamsripong P, Calleja AM, McMahon EM, Maarouf CL, Kokjohn TA, et al. Patients with Alzheimer disease have altered transmitral flow. J Ultrasound Med. 2009;28:1493–500.

    Article  PubMed  Google Scholar 

  53. de la Torre JC. Cerebral perfusion enhancing interventions: a new strategy for the prevention of Alzheimer dementia. Brain Pathol. 2016;26:618–31.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Szu JI, Obenaus A. Cerebrovascular phenotypes in mouse models of Alzheimer’s disease. J Cereb Blood Flow Metab. 2021;41:1821–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. •• Waldstein SR, Rice SC, Thayer JF, Najjar SS, Scuteri A, Zonderman AB. Pulse pressure and pulse wave velocity are related to cognitive decline in the Baltimore Longitudinal Study of Aging. Hypertension. 2008;51:99–104. Seminal study which shows how pulse pressure and pulse wave velocity are not only associated with aging, but also markers of arterial stiffness are associated with cognitive decline before dementia. This study shows the capacity of pulse wave velocity as a diagnostic tool prior to pathology development.

    Article  CAS  PubMed  Google Scholar 

  56. Bramwell JC, Hill AV. Velocity of transmission of the pulse-wave: and elasticity of arteries. The Lancet. 1922;199:891–2.

    Article  Google Scholar 

  57. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141:e139-596.

    Article  PubMed  Google Scholar 

  58. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39:3021–104.

    Article  PubMed  Google Scholar 

  59. Girerd N, Legedz L, Paget V, Rabilloud M, Milon H, Bricca G, et al. Outcome associations of carotid-femoral pulse wave velocity vary with different measurement methods. Am J Hypertens. 2012;25:1264–70.

    PubMed  Google Scholar 

  60. • Mitchell GF, Hwang S-J, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121:505–11. Large scale study from the Framingham Heart Study, which shows that higher aortic pulse wave velocity, was associated with a 48% increase in the risk of cardiovascular disease, even independent of other risk factors.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.

    Article  PubMed  Google Scholar 

  62. Utescu MS, Couture V, Mac-Way F, De Serres SA, Marquis K, Larivière R, et al. Determinants of progression of aortic stiffness in hemodialysis patients: a prospective longitudinal study. Hypertension. 2013;62:154–60.

    Article  CAS  PubMed  Google Scholar 

  63. Keehn L, Milne L, McNeill K, Chowienczyk P, Sinha MD. Measurement of pulse wave velocity in children: comparison of volumetric and tonometric sensors, brachial-femoral and carotid-femoral pathways. J Hypertens. 2014;32:1464–9; discussion 1469.

  64. Vlachopoulos C, Aznaouridis K, Terentes-Printzios D, Ioakeimidis N, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: a systematic review and meta-analysis. Hypertension. 2012;60:556–62.

    Article  CAS  PubMed  Google Scholar 

  65. Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. Circulation. 1985;72:1257–69.

    Article  CAS  PubMed  Google Scholar 

  66. Avolio AP, Deng FQ, Li WQ, Luo YF, Huang ZD, Xing LF, et al. Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation. 1985;71:202–10.

    Article  CAS  PubMed  Google Scholar 

  67. Pan F-S, Yu L, Luo J, Wu R-D, Xu M, Liang J-Y, et al. Carotid artery stiffness assessment by ultrafast ultrasound imaging: feasibility and potential influencing factors. J Ultrasound Med. 2018;37:2759–67.

    Article  PubMed  Google Scholar 

  68. London GM, Pannier B. Arterial functions: how to interpret the complex physiology. Nephrol Dial Transplant. 2010;25:3815–23.

    Article  PubMed  Google Scholar 

  69. Mattace-Raso FUS, van der Cammen TJM, Hofman A, van Popele NM, Bos ML, Schalekamp MADH, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 2006;113:657–63.

    Article  PubMed  Google Scholar 

  70. Mitchell GF. Arterial stiffness in aging: does it have a place in clinical practice? Hypertension. 2021;77:768–80.

    Article  CAS  PubMed  Google Scholar 

  71. Heffernan KS, Jae SY, Loprinzi PD. Association between estimated pulse wave velocity and mortality in U.S. adults. J Am Coll Cardiol. 2020;75:1862–4.

  72. Yin L-X, Ma C-Y, Wang S, Wang Y-H, Meng P-P, Pan X-F, et al. Reference values of carotid ultrafast pulse-wave velocity: a prospective, multicenter, population-based study. J Am Soc Echocardiogr. 2021;34:629–41.

    Article  PubMed  Google Scholar 

  73. Senarathna J, Rege A, Li N, Thakor NV. Laser speckle contrast imaging: theory, instrumentation and applications. IEEE Rev Biomed Eng. 2013;6:99–110.

    Article  PubMed  Google Scholar 

  74. Srinivasan VJ, Sakadžić S, Gorczynska I, Ruvinskaya S, Wu W, Fujimoto JG, et al. Quantitative cerebral blood flow with optical coherence tomography. Opt Express. 2010;18:2477–94.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kumar V, Chang H, Reiter DA, Bradley DP, Belury M, McCormack SE, et al. Phosphorus-31 magnetic resonance spectroscopy: a tool for measuring in vivo mitochondrial oxidative phosphorylation capacity in human skeletal muscle. Journal of visualized experiments: JoVE. 2017.

  76. Hoare D, Bussooa A, Neale S, Mirzai N, Mercer J. The future of cardiovascular stents: bioresorbable and integrated biosensor technology. Adv Sci. 2019;6:1900856.

  77. Li H, Ma Y, Liang Z, Wang Z, Cao Y, Xu Y, et al. Wearable skin-like optoelectronic systems with suppression of motion artifacts for cuff-less continuous blood pressure monitor. Natl Sci Rev. 2020;7:849–62.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chen G, Au C, Chen J. Textile triboelectric nanogenerators for wearable pulse wave monitoring. Trends Biotechnol. 2021;39:1078–92.

    Article  CAS  PubMed  Google Scholar 

  79. • Meng K, Chen J, Li X, Wu Y, Fan W, Zhou Z, et al. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure. Adv Func Mater. 2019;29:1806388. Example of wearable device for continuous monitoring of pulse wave and blood pressure in a non-invasive manner. This powerful technology is likely to continuously develop for greater monitoring of pulse wave velocity.

    Article  Google Scholar 

  80. Kaisti M, Panula T, Leppänen J, Punkkinen R, Jafari Tadi M, Vasankari T, et al. Clinical assessment of a non-invasive wearable MEMS pressure sensor array for monitoring of arterial pulse waveform, heart rate and detection of atrial fibrillation. NPJ Digit Med. 2019;2:1–10.

  81. Lin J, Fu R, Zhong X, Yu P, Tan G, Li W, et al. Wearable sensors and devices for real-time cardiovascular disease monitoring. Cell Rep Phys Sci. 2021;2.

  82. Jae SY, Heffernan KS, Kurl S, Kunutsor SK, Laukkanen JA. Association between estimated pulse wave velocity and the risk of stroke in middle-aged men. Int J Stroke. 2021;16:551–5.

    Article  PubMed  Google Scholar 

  83. James SA, Strogatz DS, Wing SB, Ramsey DL. Socioeconomic status, John Henryism, and hypertension in blacks and whites. Am J Epidemiol. 1987;126:664–73.

    Article  CAS  PubMed  Google Scholar 

  84. Heffernan KS, Stoner L, London AS, Augustine JA, Lefferts WK. Estimated pulse wave velocity as a measure of vascular aging. PLoS ONE. 2023;18:e0280896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Salvi P, Scalise F, Rovina M, Moretti F, Salvi L, Grillo A, et al. Noninvasive estimation of aortic stiffness through different approaches. Hypertension. 2019;74:117–29.

    Article  CAS  PubMed  Google Scholar 

  86. El-Hajj C, Kyriacou PA. A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure. Biomed Signal Process Control. 2020;58: 101870.

    Article  Google Scholar 

  87. Vallée A, Cinaud A, Blachier V, Lelong H, Safar ME, Blacher J. Coronary heart disease diagnosis by artificial neural networks including aortic pulse wave velocity index and clinical parameters. J Hypertens. 2019;37:1682.

    Article  PubMed  Google Scholar 

  88. Jin W, Chowienczyk P, Alastruey J. Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms. PLoS ONE. 2021;16:e0245026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Marshall AG, Neikirk K, Barongan T, Shao B, Crabtree A, Stephens D, et al. Alterations in cardiovascular and cerebral pulse wave velocity in 5XFAD murine model of Alzheimer’s disease [Internet]. bioRxiv; 2023 [cited 2023 Jun 29]. p. 2023.06.22.546154. Available from: https://www.biorxiv.org/content/10.1101/2023.06.22.546154v1.

  90. Björnfot C, Garpebring A, Qvarlander S, Malm J, Eklund A, Wåhlin A. Assessing cerebral arterial pulse wave velocity using 4D flow MRI. J Cereb Blood Flow Metab. 2021;41:2769–77.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cahu Rodrigues SL, Farah BQ, Silva G, Correia M, Pedrosa R, Vianna L, et al. Vascular effects of isometric handgrip training in hypertensives. Clin Exp Hypertens. 2020;42:24–30.

    Article  CAS  PubMed  Google Scholar 

  92. Patel RS, Al Mheid I, Morris AA, Ahmed Y, Kavtaradze N, Ali S, et al. Oxidative stress is associated with impaired arterial elasticity. Atherosclerosis. 2011;218:90–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim M, Kim M, Yoo HJ, Lee SY, Lee S-H, Lee JH. Age-specific determinants of pulse wave velocity among metabolic syndrome components, inflammatory markers, and oxidative stress. J Atheroscler Thromb. 2018;25:178–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Foote K, Reinhold J, Yu EPK, Figg NL, Finigan A, Murphy MP, et al. Restoring mitochondrial DNA copy number preserves mitochondrial function and delays vascular aging in mice. Aging Cell. 2018;17:e12773.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhou R-H, Vendrov AE, Tchivilev I, Niu X-L, Molnar KC, Rojas M, et al. Mitochondrial oxidative stress in aortic stiffening with age. Arterioscler Thromb Vasc Biol. 2012;32:745–55.

    Article  CAS  PubMed  Google Scholar 

  96. Canugovi C, Stevenson MD, Vendrov AE, Hayami T, Robidoux J, Xiao H, et al. Increased mitochondrial NADPH oxidase 4 (NOX4) expression in aging is a causative factor in aortic stiffening. Redox Biol. 2019;26:101288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Park S-Y, Pekas EJ, Headid RJ, Son W-M, Wooden TK, Song J, et al. Acute mitochondrial antioxidant intake improves endothelial function, antioxidant enzyme activity, and exercise tolerance in patients with peripheral artery disease. Am J Physiol Heart Circ Physiol. 2020;319:H456–67.

  98. Gioscia-Ryan RA, Battson ML, Cuevas LM, Eng JS, Murphy MP, Seals DR. Mitochondria-targeted antioxidant therapy with MitoQ ameliorates aortic stiffening in old mice. APSselect. 2017;4:1194–202.

    Google Scholar 

  99. Kario K, Chirinos JA, Townsend RR, Weber MA, Scuteri A, Avolio A, et al. Systemic hemodynamic atherothrombotic syndrome (SHATS) – coupling vascular disease and blood pressure variability: proposed concept from pulse of Asia. Prog Cardiovasc Dis. 2020;63:22–32.

    Article  PubMed  Google Scholar 

  100. Del Giorno R, Troiani C, Gabutti S, Stefanelli K, Gabutti L. Comparing oscillometric and tonometric methods to assess pulse wave velocity: a population-based study. Ann Med. 2021;53:1–16.

    Article  PubMed  Google Scholar 

  101. Schwartz JE, Feig PU, Izzo JL. Pulse wave velocities derived from cuff ambulatory pulse wave analysis. Hypertension. 2019;74:111–6.

    Article  CAS  PubMed  Google Scholar 

  102. Bia D, Zócalo Y. Physiological age- and sex-related profiles for local (aortic) and regional (carotid-femoral, carotid-radial) pulse wave velocity and center-to-periphery stiffness gradient, with and without blood pressure adjustments: reference intervals and agreement between methods in healthy subjects (3–84 years). J Cardiovasc Dev Dis. 2021;8:3.

  103. Diaz A, Tringler M, Wray S, Ramirez AJ, Cabrera Fischer EI. The effects of age on pulse wave velocity in untreated hypertension. J Clin Hypertens. 2018;20:258–65.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Current Hypertension Reports is grateful to Dr. Suzanne Oparil for her review of this manuscript.

Funding

This work was supported by the Fogarty International Center and National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health grants R03HL155041, R01HL147818, R01HL144941, and R21TW012635 (AK); United Negro College Fund/Bristol-Myers Squibb E.E. Just Faculty Fund; Burroughs Wellcome Fund Career Awards at the Scientific Interface Award; Burroughs Wellcome Fund Ad-hoc Award; NIH Small Research Pilot Subaward to 5R25HL106365-12 from the NIH PRIDE Program; and DK020593, Vanderbilt Diabetes and Research Training Center for DRTC Alzheimer’s Disease Pilot & Feasibility Program; CZI Science Diversity Leadership grant number 2022- 253529 from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation (AHJ).

Author information

Authors and Affiliations

Authors

Contributions

All authors prepared manuscript text and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Antentor Hinton Jr..

Ethics declarations

Conflict of Interest

Dr. Reddy is a collaborator and consultant with Indus Instruments, Webster, TX. All other authors have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Consent for Publication

All authors have agreed to the final version of this manuscript.

Disclaimer

Its contents are solely the responsibility of the authors and do not necessarily represent the official view of the National Institutes of Health. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marshall, A.G., Neikirk, K., Afolabi, J. et al. Update on the Use of Pulse Wave Velocity to Measure Age-Related Vascular Changes. Curr Hypertens Rep 26, 131–140 (2024). https://doi.org/10.1007/s11906-023-01285-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-023-01285-x

Keywords

Navigation