Skip to main content
Log in

Blood Pressure Effects of SGLT2 Inhibitors: Mechanisms and Clinical Evidence in Different Populations

  • Antihypertensive Agents: Mechanisms of Drug Action (M Ernst, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Sodium glucose transporter 2 inhibitors (SGLT2 inhibitors) are increasingly prescribed due to their considerable benefits on clinical outcomes in people with diabetes, heart failure, and chronic kidney disease (CKD). Hypertension is a common comorbidity in each of these disease states, increasing risk of cardiovascular morbidity and mortality. We herein review the effects of SGLT2 inhibitors on blood pressure in different populations, proposed mechanisms of action, and the contribution of blood pressure lowering to end-organ protection.

Recent Findings

A recognised effect of SGLT2 inhibitors in recent clinical trials is blood pressure lowering, with multiple postulated mechanisms. This advantageous effect was first identified in populations with type 2 diabetes mellitus, prior to expansion of these trials to broader cohorts.

Summary

On our review, we identified that the blood pressure lowering effect of SGLT2 inhibitors appears to be a dose-independent class-effect, with a magnitude of effect comparable to that seen with a low dose hydrochlorothiazide. There is considerable evidence demonstrating that this effect is observed across populations including those with type 2 diabetes mellitus, chronic kidney disease, and resistant hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Materials

Declaration is not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Petrie J, Guzik T, Touyz R. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018;34(5):575–84.

    Article  PubMed  Google Scholar 

  2. Baker W, Smyth L, Riche D, Bourret E, Chamberlin K, White W. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens. 2014;8(4):262–75.

    Article  PubMed  CAS  Google Scholar 

  3. Mazidi M, Rezaie P, Gao HK, Kengne AP. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc. 2017;6(6):e004007.

  4. Georgianos P, Agarwal R. Ambulatory blood pressure reduction with SGLT-2 inhibitors: dose-response meta-analysis and comparative evaluation with low-dose hydrochlorothiazide. Diabetes Care. 2019;42(4):693–700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Amin NB, Wang X, Mitchell JR, Lee DS, Nucci G, Rusnak JM. Blood pressure-lowering effect of the sodium glucose co-transporter-2 inhibitor ertugliflozin, assessed via ambulatory blood pressure monitoring in patients with type 2 diabetes and hypertension. Diabetes Obes Metab. 2015;17(8):805–8.

    Article  PubMed  CAS  Google Scholar 

  6. Cherney D, Cooper M, Tikkanen I, Pfarr E, Johansen OE, Woerle H, et al. Pooled analysis of phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HbA1c reductions with empagliflozin. Kidney Int. 2018;93(1):231–44.

    Article  PubMed  CAS  Google Scholar 

  7. • Ye N, Jardine M, Oshima M, Hockham C, Heerspink H, Agarwal R, et al. Blood pressure effects of canagliflozin and clinical outcomes in type 2 diabetes and chronic kidney disease. Circulation. 2021;143:1735–49. The findings from this study demonstrated that the blood pressure lowering effects of SGLT2 inhibitors are similarly applicable to patients with chronic kidney disease and resistant hypertension, expanding on previous trials which excluded these populations. This broadened the cohort who were considered to benefit from these agents.

  8. Baker W, Buckley L, Kelly M, Bucheit J, Parod E, Brown R, et al. Effects of sodium-glucose cotransporter 2 inhibitors on 24-hour ambulatory blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2017;6(5):e005686.

  9. Townsend R, Machin I, Ren J, Trujillo A, Kawaguchi M, Vijapurkar U, et al. Reductions in mean 24-hour ambulatory blood pressure after 6-week treatment with canagliflozin in patients with type 2 diabetes Mellitus and hypertension. J Clin Hypertens (Greenwich). 2016;18(1):43–52.

    Article  CAS  Google Scholar 

  10. Kario K, Okada K, Kato M, Nishizawa M, Yoshida T, Asano T, et al. Twenty-four-hour blood pressure–lowering effect of a sodium-glucose cotransporter 2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension. Circulation. 2018;139:2089–97.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Takeshige Y, Fujisawa Y, Rahman A, Kittikuluth W, Nakano D, Mori H, et al. A sodium-glucose co-transporter 2 inhibitor empagliflozin prevents abnormality of circadian rhythm of blood pressure in salt-treated obese rats. Hypertens Res. 2016;39(6):415–22.

    Article  PubMed  CAS  Google Scholar 

  12. Heerspink H, Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15(9):853–62.

    Article  PubMed Central  Google Scholar 

  13. Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl U, et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38(3):420–8.

    Article  PubMed  CAS  Google Scholar 

  14. Posch M, Walther N, Ferrannini E, Powell D, Banks P, Wason S, et al. Metabolic, intestinal, and cardiovascular effects of sotagliflozin compared with empagliflozin in patients with type 2 diabetes: a randomized, double-blind study. Diabetes Care. 2022;45(9):2118–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Neuen B, Young T, Heerspik H, Neal B, Perkovic V, Billot L. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019;7(11):845–54.

    Article  PubMed  CAS  Google Scholar 

  16. Perkovic V, Jardine M, Neal B, Bompoint S, Heerspink H, Charytan D, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–306.

    Article  PubMed  CAS  Google Scholar 

  17. Sen T, Scholtes R, Greasley P, Cherney D, Dekkers C, Vervloet M, et al. Effects of dapagliflozin on volume status and systemic haemodynamics in patients with chronic kidney disease without diabetes: results from DAPASALT and DIAMOND. Diabetes Obes Metab. 2022;24(8):1578–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. •• Wheeler D, Toto R, Stefansson B, Jongs N, Chertow G, Greene T, et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 2021;100(1):215–44. The subgroup analysis of DAPA-CKD presented in this study demonstrated the renoprotective effects of SGLT2 inhibitors in patients with chronic kidney disease secondary to IgA nephropathy. These findings demonstrated the utility of these agents in a non-diabetic chronic kidney disease population.

  19. Wheeler D, Jongs N, Stefansson B, Chertow G, Greene T, Hou FF, et al. Safety and efficacy of dapagliflozin in patients with focal segmental glomerulosclerosis: a prespecified analysis of the dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial. Nephrol Dial Transplant. 2022;37(9):1647–56.

    Article  PubMed  CAS  Google Scholar 

  20. Ferreira J, Fitchett D, Ofstad AP, Kraus B, Wanner C, Zwiener I, et al. Empagliflozin for patients with presumed resistant hypertension: a post hoc analysis of the EMPA-REG OUTCOME trial. Am J Hypertens. 2020;33(12):1092–101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Provenzano M, Puchades MJ, Garofalo C, Jongs N, D’Marco L, Andreucci M, et al. Albuminuria-lowering effect of dapagliflozin, eplerenone, and their combination in patients with chronic kidney disease: a randomized crossover clinical trial. J Am Soc Nephrol. 2022;33(8):1569–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Neuen B, Oshima M, Agarwal R, Arnott C, Cherney D, Edwards R, et al. Sodium-glucose cotransporter 2 inhibitors and risk of hyperkalemia in people with type 2 diabetes: a meta-analysis of individual participant data From randomized, controlled trials. Circulation. 2022;145:1460–70.

    Article  PubMed  CAS  Google Scholar 

  23. Vaduganathan M, Docherty KF, Claggett BL, Jhund PS, de Boer RA, Hernandez AF, et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet. 2022;400(10354):757–67.

    Article  PubMed  CAS  Google Scholar 

  24. Martinez F, Serenelli M, Nicolau J, Petrie M, Chiang CE, Tereshchenko S, et al. Efficacy and safety of dapagliflozin in heart failure with reduced ejection fraction according to age. Circulation. 2020;141:100–11.

    Article  PubMed  CAS  Google Scholar 

  25. Serenelli M, Bohm M, Inzucchi S, Kober L, Kosiborod M, Martinez F, et al. Effect of dapagliflozin according to baseline systolic blood pressure in the Dapagliflozin and prevention of adverse outcomes in heart failure trial (DAPA-HF). Eur Heart J. 2020;41(36):3402–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Anker S, Butler J, Filippatos G, Ferreira J, Bocchi E, Bohm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385:1451–61.

    Article  PubMed  CAS  Google Scholar 

  27. Packer M. Lack of durable natriuresis and objective decongestion following SGLT2 inhibition in randomized controlled trials of patients with heart failure. Cardiovasc Diabetol. 2023;22(1):197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wilcox CS. Antihypertensive and renal mechanisms of SGLT2 (sodium-glucose linked transporter 2) inhibitors. Hypertension. 2020;75(4):894–901.

    Article  PubMed  CAS  Google Scholar 

  29. Onishi A, Fu Y, Patel R, Darshi M, Crespo-Masip M, Huang W, et al. A role for tubular Na+/H+ exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. Am J Physiol Renal Physiol. 2020;319(4):F712–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Huang W, Patel R, Onishi A, Masip MC, Soleimani M, Freeman B, et al. Tubular NHE3 is a determinant of the acute natriuretic and chronic blood pressure lowering effect of the SGLT2 inhibitor empagliflozin. FASEB J. 2018;32(S1):620–17.

  31. Mayne K. Effects of empagliflozin on fluid overload in chronic kidney disease: an EMPA-KIDNEY bioimpedance substudy University of Oxford, Oxford, United Kingdom: Clinical Trial Service Unit and Epidemiological Studies Unit 2023. Available from: https://www.empakidney.org/downloads.

  32. Cherney D, Perkins B, Soleymanlou N, Maione M, Lai V, Lee L, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129:587–97.

  33. Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle H, Boedl UC, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(12):1180–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lambers Heerspink H, De Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15(9):853–62.

    Article  PubMed  CAS  Google Scholar 

  35. Hallow KM, Helmlinger G, Greasley PJ, McMurray JJ, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab. 2018;20(3):479–87.

    Article  PubMed  CAS  Google Scholar 

  36. Mazer CD, Hare GM, Connelly PW, Gilbert RE, Shehata N, Quan A, et al. Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation. 2020;141(8):704–7.

    Article  PubMed  Google Scholar 

  37. Oshima M, Neuen BL, Jardine MJ, Bakris G, Edwards R, Levin A, et al. Effects of canagliflozin on anaemia in patients with type 2 diabetes and chronic kidney disease: a post-hoc analysis from the CREDENCE trial. Lancet Diabetes Endocrinol. 2020;8(11):903–14.

    Article  PubMed  CAS  Google Scholar 

  38. Docherty KF, Curtain JP, Anand IS, Bengtsson O, Inzucchi SE, Køber L, et al. Effect of dapagliflozin on anaemia in DAPA-HF. Eur J Heart Fail. 2021;23(4):617–28.

    Article  PubMed  CAS  Google Scholar 

  39. Majewski C, Bakris G. Blood pressure reduction: an added benefit of sodium–glucose cotransporter 2 inhibitors in patients with type 2 diabetes. Diabetes Care. 2015;38(3):429–30.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Heerspink H, Perkins B, Fitchett D, Husain M, Cherney D. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus. Circulation. 2016;134:752–72.

    Article  PubMed  CAS  Google Scholar 

  41. Cherney D, Perkins B, Soleymanlou N, Har R, Fagan N, Johansen OE, et al. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol. 2014;13:28.

    Article  PubMed  Google Scholar 

  42. Ghanim H, Batra M, Green K, Hejna J, Abuaysheh S, Makdissi A, et al. Dapagliflozin reduces systolic blood pressure and modulates vasoactive factors. Diabetes Obes Metab. 2021;23(7):1614–23.

    Article  PubMed  CAS  Google Scholar 

  43. Herat L, Magno A, Rudnicka C, Hricova J, Carnagarin R, Ward N, et al. SGLT2 inhibitor–induced sympathoinhibition. JACC Basic Transl Sci. 2020;5(2):169–79.

    Article  PubMed Central  Google Scholar 

  44. Li J, Woodward M, Perkovic V, Figtree G, Heerpink H, Mahaffey K, et al. Mediators of the effects of canagliflozin on heart failure in patient with type 2 diabetes. JACC Heart Fail. 2020;8(1):57–66.

    Article  PubMed  Google Scholar 

Download references

Funding

Declaration is not applicable.

Author information

Authors and Affiliations

Authors

Contributions

B.B., A.S. and B.N. wrote the main manuscript text. B.B. and B.N. prepared all figures and tables. B.N. is the corresponding author. All authors reviewed the manuscript.

Corresponding author

Correspondence to Brendon L. Neuen.

Ethics declarations

Conflict of Interest

Authors BB and AS declare that they have no conflicts of interest. Author BLN has received fees for advisory boards, steering committee roles, scientific presentations, and travel support from AstraZeneca, Bayer, Boehringer and Ingelheim, Cambridge Healthcare Research, the Limbic, Medscape, and Janssen, with all honoraria paid to his institution. He serves as Secretariat of the SGLT2 Inhibitor Meta-Analysis Cardio-Renal Trialists Consortium.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beal, B., Schutte, A.E. & Neuen, B.L. Blood Pressure Effects of SGLT2 Inhibitors: Mechanisms and Clinical Evidence in Different Populations. Curr Hypertens Rep 25, 429–435 (2023). https://doi.org/10.1007/s11906-023-01281-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-023-01281-1

Keywords

Navigation