Skip to main content

Advertisement

Log in

Microvascular Dysfunction in Obesity-Hypertension

  • Hypertension and Obesity (E Reisin, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to explore the role of microvascular dysfunction in obesity-hypertension, discuss the effects obesity has on renal microvasculature, review the current methods for assessing microvascular dysfunction and available therapeutic options, and identify critical areas for further research.

Recent Findings

There is a strong association between obesity and hypertension. However, the pathophysiology of obesity-hypertension is not clear. Microvascular dysfunction has been linked to hypertension and obesity and could be an important mediator of obesity-related hypertension. Newer therapies for hypertension and obesity could have ameliorating effects on microvascular dysfunction, including GLP-1 agonists and SGLT-2 inhibitors.

Summary

There is still much progress to be made in our understanding of the complex interplay between obesity, hypertension, and microvascular dysfunction. Continued efforts to understand microvascular dysfunction and its role in obesity-hypertension are crucial to develop precision therapy to target obesity-hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Collaboration NCDRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387(10026):1377–1396.

  2. Tsai AG, Williamson DF, Glick HA. Direct medical cost of overweight and obesity in the USA: a quantitative systematic review. Obes Rev. 2011;12(1):50–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Forman JP, Stampfer MJ, Curhan GC. Diet and lifestyle risk factors associated with incident hypertension in women. JAMA. 2009;302(4):401–11.

    Article  PubMed  CAS  Google Scholar 

  4. Stamler R, Stamler J, Riedlinger WF, Algera G, Roberts RH. Weight and blood pressure. Findings in hypertension screening of 1 million Americans. JAMA. 1978;240(15):1607–1610.

  5. • Xu C, Sellke FW, Abid MR. Assessments of microvascular function in organ systems. Am J Physiol Heart Circ Physiol. 2022;322(6):H891–905. This review discusses the extensive direct and indirect modalities currently available to assess microvascular function in different organ systems and their clinical utility.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Rizzoni D, Mengozzi A, Masi S, AgabitiRosei C, De Ciuceis C, Virdis A. New noninvasive methods to evaluate microvascular structure and function. Hypertension. 2022;79(5):874–86.

    Article  PubMed  CAS  Google Scholar 

  7. Mathew RC, Bourque JM, Salerno M, Kramer CM. Cardiovascular imaging techniques to assess microvascular dysfunction. JACC Cardiovasc Imaging. 2020;13(7):1577–90.

    Article  PubMed  Google Scholar 

  8. Layland J, MacIsaac AI, Burns AT, et al. When collateral supply is accounted for epicardial stenosis does not increase microvascular resistance. Circ Cardiovasc Interv. 2012;5(1):97–102.

    Article  PubMed  Google Scholar 

  9. Ng MK, Yeung AC, Fearon WF. Invasive assessment of the coronary microcirculation: superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation. 2006;113(17):2054–61.

    Article  PubMed  Google Scholar 

  10. Park SD, Baek YS, Lee MJ, et al. Comprehensive assessment of microcirculation after primary percutaneous intervention in ST-segment elevation myocardial infarction: insight from thermodilution-derived index of microcirculatory resistance and coronary flow reserve. Coron Artery Dis. 2016;27(1):34–9.

    Article  PubMed  Google Scholar 

  11. Murthy VL, Bateman TM, Beanlands RS, et al. Clinical quantification of myocardial blood flow using PET: Joint Position Paper of the SNMMI Cardiovascular Council and the ASNC. J Nucl Cardiol. 2018;25(1):269–97.

    Article  PubMed  Google Scholar 

  12. Shimizu I, Aprahamian T, Kikuchi R, et al. Vascular rarefaction mediates whitening of brown fat in obesity. J Clin Invest. 2014;124(5):2099–112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gealekman O, Guseva N, Hartigan C, et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation. 2011;123(2):186–94.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nakadate K, Motojima K, Tanaka-Nakadate S. Dilatation of sinusoidal capillary and swelling of sinusoidal fenestration in obesity: an ultrastructural study. Ultrastruct Pathol. 2015;39(1):30–7.

    Article  PubMed  Google Scholar 

  15. Zhi Z, Chao JR, Wietecha T, Hudkins KL, Alpers CE, Wang RK. Noninvasive imaging of retinal morphology and microvasculature in obese mice using optical coherence tomography and optical microangiography. Invest Ophthalmol Vis Sci. 2014;55(2):1024–30.

    Article  PubMed  PubMed Central  Google Scholar 

  16. De Ciuceis C, Porteri E, Rizzoni D, et al. Effects of weight loss on structural and functional alterations of subcutaneous small arteries in obese patients. Hypertension. 2011;58(1):29–36.

    Article  Google Scholar 

  17. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996;97(11):2601–2610.

  18. Grassi G, Seravalle G, Scopelliti F, et al. Structural and functional alterations of subcutaneous small resistance arteries in severe human obesity. Obesity (Silver Spring). 2010;18(1):92–8.

    Article  PubMed  CAS  Google Scholar 

  19. Virdis A, Duranti E, Rossi C, et al. Tumour necrosis factor-alpha participates on the endothelin-1/nitric oxide imbalance in small arteries from obese patients: role of perivascular adipose tissue. Eur Heart J. 2015;36(13):784–94.

    Article  PubMed  CAS  Google Scholar 

  20. Shimomura I, Funahashi T, Takahashi M, et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med. 1996;2(7):800–3.

    Article  PubMed  CAS  Google Scholar 

  21. Massiera F, Bloch-Faure M, Ceiler D, et al. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J. 2001;15(14):2727–9.

    Article  PubMed  CAS  Google Scholar 

  22. Soares AG, de Carvalho MHC, Akamine E. Obesity induces artery-specific alterations: evaluation of vascular function and inflammatory and smooth muscle phenotypic markers. Biomed Res Int. 2017;2017:5038602.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maury E, Navez B, Brichard SM. Circadian clock dysfunction in human omental fat links obesity to metabolic inflammation. Nat Commun. 2021;12(1):2388.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144(1):21–8. Epub 2006/01/04. https://doi.org/10.7326/0003-4819-144-1-200601030-00006. PubMed PMID: 16389251.

  25. Zhu P, Herrington WG, Haynes R, Emberson J, Landray MJ, Sudlow CLM, Woodward M, Baigent C, Lewington S, Staplin N. Conventional and genetic evidence on the association between adiposity and CKD. J Am Soc Nephrol. 2021;32(1):127–37. Epub 2020/11/01. https://doi.org/10.1681/ASN.2020050679. PubMed PMID: 33127858; PMCID: PMC7894659.

  26. Xu X, Eales JM, Jiang X, Sanderson E, Drzal M, Saluja S, Scannali D, Williams B, Morris AP, Guzik TJ, Charchar FJ, Holmes MV, Tomaszewski M. Contributions of obesity to kidney health and disease: insights from Mendelian randomization and the human kidney transcriptomics. Cardiovasc Res. 2022;118(15):3151–61. Epub 2021/12/12. https://doi.org/10.1093/cvr/cvab357. PubMed PMID: 34893803; PMCID: PMC9732514.

  27. Iliescu R, Chade AR. Progressive renal vascular proliferation and injury in obese Zucker rats. Microcirculation. 2010;17(4):250–8. Epub 2010/06/12. https://doi.org/10.1111/j.1549-8719.2010.00020.x. PubMed PMID: 20536738; PMCID: PMC2924614.

  28. Ngo DT, Farb MG, Kikuchi R, Karki S, Tiwari S, Bigornia SJ, Bates DO, LaValley MP, Hamburg NM, Vita JA, Hess DT, Walsh K, Gokce N. Antiangiogenic actions of vascular endothelial growth factor-A165b, an inhibitory isoform of vascular endothelial growth factor-A, in human obesity. Circulation. 2014;130(13):1072–80. Epub 2014/08/15. https://doi.org/10.1161/CIRCULATIONAHA.113.008171. PubMed PMID: 25116954; PMCID: PMC4175289.

  29. Yong J, Tian J, Yang X, Xing H, He Y, Song X. Effects of oral drugs on coronary microvascular function in patients without significant stenosis of epicardial coronary arteries: a systematic review and meta-analysis of coronary flow reserve. Front Cardiovasc Med. 2020;7:580419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Baller D, Notohamiprodjo G, Gleichmann U, Holzinger J, Weise R, Lehmann J. Improvement in coronary flow reserve determined by positron emission tomography after 6 months of cholesterol-lowering therapy in patients with early stages of coronary atherosclerosis. Circulation. 1999;99(22):2871–5.

    Article  PubMed  CAS  Google Scholar 

  31. Pizzi C, Manfrini O, Fontana F, Bugiardini R. Angiotensin-converting enzyme inhibitors and 3-hydroxy-3-methylglutaryl coenzyme A reductase in cardiac Syndrome X: role of superoxide dismutase activity. Circulation. 2004;109(1):53–8.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang X, Li Q, Zhao J, et al. Effects of combination of statin and calcium channel blocker in patients with cardiac syndrome X. Coron Artery Dis. 2014;25(1):40–4.

    Article  PubMed  Google Scholar 

  33. Ishida K, Geshi T, Nakano A, et al. Beneficial effects of statin treatment on coronary microvascular dysfunction and left ventricular remodeling in patients with acute myocardial infarction. Int J Cardiol. 2012;155(3):442–7.

    Article  PubMed  Google Scholar 

  34. Rehan R, Yong A, Ng M, Weaver J, Puranik R. Coronary microvascular dysfunction: a review of recent progress and clinical implications. Front Cardiovasc Med. 2023;10:1111721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wittfeldt A, Emanuelsson H, Brandrup-Wognsen G, et al. Ticagrelor enhances adenosine-induced coronary vasodilatory responses in humans. J Am Coll Cardiol. 2013;61(7):723–7.

    Article  PubMed  CAS  Google Scholar 

  36. Liu Y, Ding LY, Li XZ. Therapy with ticagrelor for ST-elevated acute coronary syndrome accompanied by diabetes mellitus. Eur Rev Med Pharmacol Sci. 2019;23(3 Suppl):312–8.

    PubMed  CAS  Google Scholar 

  37. Gong C, Shen SC, Zhang K, et al. Association of sodium-glucose cotransporter 2 inhibitors with cardiovascular outcome and safety events: a meta-analysis of randomized controlled clinical trials. Front Cardiovasc Med. 2022;9:926979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sattar N, Lee MMY, Kristensen SL, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021;9(10):653–62.

    Article  PubMed  CAS  Google Scholar 

  39. Delgado-Aros S, Kim DY, Burton DD, et al. Effect of GLP-1 on gastric volume, emptying, maximum volume ingested, and postprandial symptoms in humans. Am J Physiol Gastrointest Liver Physiol. 2002;282(3):G424–431.

    Article  PubMed  CAS  Google Scholar 

  40. Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022;387(3):205–16.

    Article  PubMed  CAS  Google Scholar 

  41. Rosenstock J, Frias J, Jastreboff AM, et al. Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes: a randomised, double-blind, placebo and active-controlled, parallel-group, phase 2 trial conducted in the USA. Lancet. 2023.

  42. Sukumaran V, Tsuchimochi H, Sonobe T, Waddingham MT, Shirai M, Pearson JT. Liraglutide treatment improves the coronary microcirculation in insulin resistant Zucker obese rats on a high salt diet. Cardiovasc Diabetol. 2020;19(1):24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wang N, Tan AWK, Jahn LA, et al. Vasodilatory actions of glucagon-like peptide 1 are preserved in skeletal and cardiac muscle microvasculature but not in conduit artery in obese humans with vascular insulin resistance. Diabetes Care. 2020;43(3):634–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Suhrs HE, Raft KF, Bove K, et al. Effect of liraglutide on body weight and microvascular function in non-diabetic overweight women with coronary microvascular dysfunction. Int J Cardiol. 2019;283:28–34.

    Article  PubMed  Google Scholar 

  45. Nilsson M, Bove KB, Suhrs E, et al. The effect of DPP-4-protected GLP-1 (7–36) on coronary microvascular function in obese adults. Int J Cardiol Heart Vasc. 2019;22:139–44.

    PubMed Central  Google Scholar 

  46. Tu Y, Li Q, Zhou Y, et al. Empagliflozin inhibits coronary microvascular dysfunction and reduces cardiac pericyte loss in db/db mice. Front Cardiovasc Med. 2022;9:995216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. De Stefano A, Tesauro M, Di Daniele N, Vizioli G, Schinzari F, Cardillo C. Mechanisms of SGLT2 (sodium-glucose transporter type 2) inhibition-induced relaxation in arteries from human visceral adipose tissue. Hypertension. 2021;77(2):729–38.

    Article  PubMed  Google Scholar 

  48. Antonios TF, Rattray FM, Singer DR, Markandu ND, Mortimer PS, MacGregor GA. Rarefaction of skin capillaries in normotensive offspring of individuals with essential hypertension. Heart. 2003;89(2):175–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wong TY, Klein R, Sharrett AR, et al. Retinal arteriolar diameter and risk for hypertension. Ann Intern Med. 2004;140(4):248–55.

    Article  PubMed  Google Scholar 

  50. Yi CX, Gericke M, Kruger M, et al. High calorie diet triggers hypothalamic angiopathy. Mol Metab. 2012;1(1–2):95–100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Gruber T, Pan C, Contreras RE, et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 2021;33(6):1155–1170.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Mohandas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, T., Van, A., Ataei, A. et al. Microvascular Dysfunction in Obesity-Hypertension. Curr Hypertens Rep 25, 447–453 (2023). https://doi.org/10.1007/s11906-023-01272-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-023-01272-2

Keywords

Navigation