Skip to main content

Blood Pressure Reduction in Hypertensive Acute Heart Failure


Purpose of Review

To review the key clinical and research questions regarding blood pressure (BP) reduction with vasodilators in the early management of hypertensive acute heart failure (H-AHF).

Recent Findings

Despite numerous AHF vasodilator clinical trials in the past two decades, virtually none has studied a population where vasoconstriction is the predominant physiology, and with the agents and doses most commonly used in contemporary practice. AHF patients are remarkably heterogenous by vascular tone, and this heterogeneity is not always discernible through BP or clinical exam. Emerging data suggest that diastolic BP may be a stronger correlate of vascular tone in AHF than systolic BP, despite the latter historically serving as a key inclusion criterion for vasodilator clinical trials.


Existing data are limited. A clinical trial that evaluates vasodilators in a manner of use consistent with contemporary practice, specifically within the subpopulation of patients with true H-AHF, is greatly needed. Until then, observational data supports long-standing vasodilators such as nitroglycerin, administered by IV bolus, and with goal reduction of SBP ≤25% as a safe first-line approach for patients with severe H-AHF presentations.

This is a preview of subscription content, access via your institution.

Fig. 1


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Chang PP, Wruck LM, Shahar E, et al. Trends in hospitalizations and survival of acute decompensated heart failure in four US communities (2005&#×2013;2014). Circulation. 2018;138:12–24.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics&#×2014;2019 update: a report from the American Heart Association. Circulation. 2019;139:e56–e528.

    Google Scholar 

  3. 3.

    Arrigo M, Gayat E, Parenica J, et al. Precipitating factors and 90-day outcome of acute heart failure: a report from the intercontinental GREAT registry. Eur J Heart Fail. 2017;19:201–8.

    PubMed  Google Scholar 

  4. 4.

    • Collins SP, Levy PD, Martindale JL, et al. Clinical and research considerations for patients with hypertensive acute heart failure: a consensus statement from the Society of Academic Emergency Medicine and the Heart Failure Society of America Acute Heart Failure Working Group. J Card Fail. 2016;22:618–27 The most recent and comprehensive practice guidelines for management of H-AHF, which underline the great need for future research. In particular, clinical trials are needed with much higher minimum blood pressures at enrollment, consideration of dyspnea as an endpoint, and enrollment much earlier in the emergency department course than past trials.

    PubMed  Google Scholar 

  5. 5.

    Collins SP, Storrow AB, Levy PD, et al. Early management of patients with acute heart failure: state of the art and future directions--a consensus document from the SAEM/HFSA acute heart failure working group. Acad Emerg Med. 2015;22:94–112.

    PubMed  Google Scholar 

  6. 6.

    Mebazaa A, Yilmaz MB, Levy P, et al. Recommendations on pre-hospital and early hospital management of acute heart failure: a consensus paper from the Heart Failure Association of the European Society of Cardiology, the European Society of Emergency Medicine and the Society of Academic Emergency Medicine--short version. Eur Heart J. 2015;36:1958–66.

    PubMed  Google Scholar 

  7. 7.

    Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200.

    PubMed  Google Scholar 

  8. 8.

    Hollenberg SM, Warner Stevenson L, Ahmad T, et al. 2019 ACC expert consensus decision pathway on risk assessment, management, and clinical trajectory of patients hospitalized with heart failure. J Am Coll Cardiol. 2019;74:1966.

    PubMed  Google Scholar 

  9. 9.

    Silvers SM, Howell JM, Kosowsky JM, Rokos IC, Jagoda AS. Clinical policy: critical issues in the evaluation and management of adult patients presenting to the emergency department with acute heart failure syndromes. Ann Emerg Med. 2007;49:627–69.

    PubMed  Google Scholar 

  10. 10.

    Harjola V-P, Mullens W, Banaszewski M, et al. Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail. 2017;19:821–36.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    (CHF) PCftVIVitMoA. Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. Jama. 2002;287:1531–40.

    Google Scholar 

  12. 12.

    McMurray JJ, Teerlink JR, Cotter G, et al. Effects of tezosentan on symptoms and clinical outcomes in patients with acute heart failure: the VERITAS randomized controlled trials. Jama. 2007;298:2009–19.

    CAS  PubMed  Google Scholar 

  13. 13.

    Teerlink JR, Metra M, Felker GM, et al. Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF): a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet. 2009;373:1429–39.

    CAS  PubMed  Google Scholar 

  14. 14.

    O'Connor CM, Starling RC, Hernandez AF, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365:32–43.

    CAS  PubMed  Google Scholar 

  15. 15.

    Teerlink JR, Cotter G, Davison BA, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381:29–39.

    CAS  PubMed  Google Scholar 

  16. 16.

    Gheorghiade M, Greene SJ, Filippatos G, et al. Cinaciguat, a soluble guanylate cyclase activator: results from the randomized, controlled, phase IIb COMPOSE programme in acute heart failure syndromes. Eur J Heart Fail. 2012;14:1056–66.

    CAS  PubMed  Google Scholar 

  17. 17.

    Peacock WF, Chandra A, Char D, et al. Clevidipine in acute heart failure: results of the A Study of Blood Pressure Control in Acute Heart Failure-A Pilot Study (PRONTO). Am Heart J. 2014;167:529–36.

    CAS  PubMed  Google Scholar 

  18. 18.

    Packer M, O'Connor C, McMurray JJV, et al. Effect of ularitide on cardiovascular mortality in acute heart failure. N Engl J Med. 2017;376:1956–64.

    CAS  PubMed  Google Scholar 

  19. 19.

    Pang PS, Butler J, Collins SP, et al. Biased ligand of the angiotensin II type 1 receptor in patients with acute heart failure: a randomized, double-blind, placebo-controlled, phase IIB, dose ranging trial (BLAST-AHF). Eur Heart J. 2017;38:2364–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Metra M, Teerlink JR, Cotter G, et al. Effects of serelaxin in patients with acute heart failure. N Engl J Med. 2019;381:716–26.

    CAS  PubMed  Google Scholar 

  21. 21.

    Kozhuharov N, Goudev A, Flores D, et al. Effect of a strategy of comprehensive vasodilation vs usual care on mortality and heart failure rehospitalization among patients with acute heart failure: the GALACTIC randomized clinical trial. Jama. 2019;322:2292–302.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Collins SP, Levy PD, Fermann GJ, et al. What’s next for acute heart failure research? Acad Emerg Med. 2018;25:85–93.

    PubMed  Google Scholar 

  23. 23.

    Girbes ARJ, de Grooth HJ. Time to stop randomized and large pragmatic trials for intensive care medicine syndromes: the case of sepsis and acute respiratory distress syndrome. J Thorac Dis. 2020;12:S101–s9.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Viau DM, Sala-Mercado JA, Spranger MD, Leary DS, Levy PD. The pathophysiology of hypertensive acute heart failure. Heart. 2015;101:1861.

    CAS  PubMed  Google Scholar 

  25. 25.

    Collins S, Martindale J. Optimizing hypertensive acute heart failure management with afterload reduction. Curr Hypertens Rep. 2018;20:9.

    PubMed  Google Scholar 

  26. 26.

    Liu JX, Uppal S, Patel V. Management of acute hypertensive heart failure. Heart Fail Clin. 2019;15:565–74.

    PubMed  Google Scholar 

  27. 27.

    Adams KF, Fonarow GC, Emerman CL, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149:209–16.

    PubMed  Google Scholar 

  28. 28.

    Fonarow GC, Abraham WT, Albert NM, et al. Factors identified as precipitating hospital admissions for heart failure and clinical outcomes: findings from OPTIMIZE-HF. Arch Intern Med. 2008;168:847–54.

    PubMed  Google Scholar 

  29. 29.

    Miller WL. Fluid volume overload and congestion in heart failure: time to reconsider pathophysiology and how volume is assessed. Circ Heart Fail. 2016;e002922:9.

    Google Scholar 

  30. 30.

    Fudim M, Hernandez AF, Felker GM. Role of volume redistribution in the congestion of heart failure. J Am Heart Assoc. 2017;e006817:6.

    Google Scholar 

  31. 31.

    Martindale JL, Wakai A, Collins SP, et al. Diagnosing acute heart failure in the emergency department: a systematic review and meta-analysis. Acad Emerg Med. 2016;23:223–42.

    PubMed  Google Scholar 

  32. 32.

    Chapman B, DeVore AD, Mentz RJ, Metra M. Clinical profiles in acute heart failure: an urgent need for a new approach. ESC Heart Fail. 2019;6:464–74.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Ahmad T, Desai N, Wilson F, et al. Clinical implications of cluster analysis-based classification of acute decompensated heart failure and correlation with bedside hemodynamic profiles. PLoS One. 2016;11:e0145881.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Almeida Junior GLG, Clausell N, Garcia MI, et al. Natriuretic peptide and clinical evaluation in the diagnosis of heart failure hemodynamic profile: comparison with tissue doppler echocardiography. Arq Bras Cardiol. 2018;110:270–7.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    •• Nowak RM, Reed BP, DiSomma S, et al. Presenting phenotypes of acute heart failure patients in the ED: Identification and implications. Am J Emerg Med. 2017;35:536–42 Novel analysis of AHF patients by their vascular tone and cardiac index(CI) in the emergency department (ED) showing that a substantial degree of heterogeneity exists, and that patient phenotypes are not immediately identifiable by BP or clinical exam. Vascular tone and CI form an “L”-shaped distribution in ED AHF patients, with high-normal CI and low vascular tone at one end, low CI with high vascular tone at the other end, and low-normal values for both measures in the middle.

    PubMed  Google Scholar 

  36. 36.

    Fudim M, Ganesh A, Green C, et al. Splanchnic nerve block for decompensated chronic heart failure: splanchnic-HF. Eur Heart J. 2018;39:4255–6.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Fudim M, Jones WS, Boortz-Marx RL, et al. Splanchnic nerve block for acute heart failure. Circulation. 2018;138:951–3.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Gelman SMP. Catecholamine-induced changes in the splanchnic circulation affecting systemic hemodynamics. Anesthesiology. 2004;100:434–9.

    PubMed  Google Scholar 

  39. 39.

    MacIver DH, Clark AL. The vital role of the right ventricle in the pathogenesis of acute pulmonary edema. Am J Cardiol. 2015;115:992–1000.

    PubMed  Google Scholar 

  40. 40.

    Obokata M, Nagata Y, Kado Y, Kurabayashi M, Otsuji Y, Takeuchi M. Ventricular-arterial coupling and exercise-induced pulmonary hypertension during low-level exercise in heart failure with preserved or reduced ejection fraction. J Card Fail. 2017;23:216–20.

    PubMed  Google Scholar 

  41. 41.

    Liu S, Guan Z, Jin X, et al. Left ventricular diastolic and systolic dyssynchrony and dysfunction in heart failure with preserved ejection fraction and a narrow QRS complex. Int J Med Sci. 2018;15:108–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Favot M, Ehrman R, Gowland L, et al. Changes in speckle-tracking-derived mechanical dispersion index are associated with 30-day readmissions in acute heart failure. Ultrasound J. 2019;11:9.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Peacock F, Amin A, Granger CB, et al. Hypertensive heart failure: patient characteristics, treatment, and outcomes. Am J Emerg Med. 2011;29:855–62.

    PubMed  Google Scholar 

  44. 44.

    Sokolska JM, Sokolski M, Zymlinski R, et al. Patterns of dyspnoea onset in patients with acute heart failure: clinical and prognostic implications. ESC Heart Fail. 2019;6:16–26.

    PubMed  Google Scholar 

  45. 45.

    Lee Douglas S, Lee Jacques S, Schull Michael J, et al. Prospective validation of the emergency heart failure mortality risk grade for acute heart failure. Circulation. 2019;139:1146–56.

    CAS  PubMed  Google Scholar 

  46. 46.

    Rosman Y, Kopel E, Shlomai G, Goldenberg I, Grossman E. The association between admission systolic blood pressure of heart failure patients with preserved systolic function and mortality outcomes. Eur J Intern Med. 2015;26:807–12.

    PubMed  Google Scholar 

  47. 47.

    Collins SP, Jenkins CA, Harrell FE Jr, et al. Identification of emergency department patients with acute heart failure at low risk for 30-day adverse events: the STRATIFY decision tool. JACC Heart Fail. 2015;3:737–47.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Chioncel O, Mebazaa A, Harjola VP, et al. Clinical phenotypes and outcome of patients hospitalized for acute heart failure: the ESC Heart Failure Long-Term Registry. Eur J Heart Fail. 2017;19:1242–54.

    PubMed  Google Scholar 

  49. 49.

    Al-Lawati JA, Sulaiman KJ, Al-Zakwani I, et al. Systolic blood pressure on admission and mortality in patients hospitalized with acute heart failure: observations from the Gulf Acute Heart Failure Registry. Angiology. 2017;68:584–91.

    PubMed  Google Scholar 

  50. 50.

    Allen LA, Rogers JG, Warnica JW, et al. High mortality without ESCAPE: the registry of heart failure patients receiving pulmonary artery catheters without randomization. J Card Fail. 2008;14:661–9.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    The EI, Coordinators* ES. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness the ESCAPE trial. JAMA. 2005;294:1625–33.

  52. 52.

    Harrison N, Ehrman R, Pang P, Collins S, Levy P. “Acute Heart Failure Vasodilator Trials Require Higher Enrollment Blood Pressures To Identify Those Who May Benefit.” JACC, March 2021; ACC.21 Supplement. Accepted 12 Feb 2021.

  53. 53.

    Harrison N, Ehrman R, Pang P, Collins S, Levy P. “Is Systolic Blood Pressure An Appropriate Entry Criteria For Vasodilator Clinical Trials In Acute Heart Failure?” JACC, March 2021; ACC.21 Supplement. Accepted 12 Feb 2021.

  54. 54.

    •• Cotter G, Davison BA, Butler J, et al. Relationship between baseline systolic blood pressure and long-term outcomes in acute heart failure patients treated with TRV027: an exploratory subgroup analysis of BLAST-AHF. Clin Res Cardiol. 2018;107:170–81 Post hoc analysis of the BLAST-AHF trial, suggesting that vasodilators show heterogenity of treatment effects by systolic blood pressure(SBP), with the benefit seen only at the highest tertile of SBP.

    PubMed  Google Scholar 

  55. 55.

    Weil BR, Young RF, Shen X, et al. Brief myocardial ischemia produces cardiac troponin i release and focal myocyte apoptosis in the absence of pathological infarction in Swine. JACC Basic Transl Sci. 2017;2:105–14.

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Weil BR, Suzuki G, Young RF, Iyer V, Canty JM Jr. Troponin release and reversible left ventricular dysfunction after transient pressure overload. J Am Coll Cardiol. 2018;71:2906–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Weil BR, Techiryan G, Suzuki G, Konecny F, Canty JM Jr. Adaptive reductions in left ventricular diastolic compliance protect the heart from stretch-induced stunning. JACC Basic Transl Sci. 2019;4:527–41.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Vidán MT, Bueno H, Wang Y, et al. The relationship between systolic blood pressure on admission and mortality in older patients with heart failure. Eur J Heart Fail. 2010;12:148–55.

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Solomon SD, Dobson J, Pocock S, et al. Influence of nonfatal hospitalization for heart failure on subsequent mortality in patients with chronic heart failure. Circulation. 2007;116:1482–7.

    PubMed  Google Scholar 

  60. 60.

    Ishihara S, Gayat E, Sato N, et al. Similar hemodynamic decongestion with vasodilators and inotropes: systematic review, meta-analysis, and meta-regression of 35 studies on acute heart failure. Clin Res Cardiol. 2016;105:971–80.

    PubMed  Google Scholar 

  61. 61.

    Rangaswami J, Bhalla V, Blair John EA, et al. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation. 2019;139:e840–e78.

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Ahmad T, Jackson K, Rao Veena S, et al. Worsening renal function in patients with acute heart failure undergoing aggressive diuresis is not associated with tubular injury. Circulation. 2018;137:2016–28.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Arao Y, Sawamura A, Nakatochi M, et al. Early blood pressure reduction by intravenous vasodilators is associated with acute kidney injury in patients with hypertensive acute decompensated heart. Circ J. 2019;83:1883–90.

    CAS  PubMed  Google Scholar 

  64. 64.

    Nagai T, Iwakami N, Nakai M, et al. Effect of intravenous carperitide versus nitrates as first-line vasodilators on in-hospital outcomes in hospitalized patients with acute heart failure: Insight from a nationwide claim-based database. Int J Cardiol. 2019;280:104–9.

    PubMed  Google Scholar 

  65. 65.

    Matsue Y, Kagiyama N, Yoshida K, et al. Carperitide is associated with increased in-hospital mortality in acute heart failure: a propensity score-matched analysis. J Card Fail. 2015;21:859–64.

    CAS  PubMed  Google Scholar 

  66. 66.

    Dominguez-Rodriguez A, Avanzas P, Burillo-Putze G, Abreu-Gonzalez P. Influence of morphine treatment on in-hospital mortality among patients with acute heart failure. Med Intensiva (English Edition). 2017;41:382–4.

    CAS  Google Scholar 

  67. 67.

    Alexander P, Alkhawam L, Curry J, et al. Lack of evidence for intravenous vasodilators in ED patients with acute heart failure: a systematic review. Am J Emerg Med. 2015;33:133–41.

    PubMed  Google Scholar 

  68. 68.

    Mebazaa A, Motiejunaite J, Gayat E, et al. Long-term safety of intravenous cardiovascular agents in acute heart failure: results from the European Society of Cardiology Heart Failure Long-Term Registry. Eur J Heart Fail. 2018;20:332–41.

    CAS  PubMed  Google Scholar 

  69. 69.

    Levy P, Compton S, Welch R, et al. Treatment of severe decompensated heart failure with high-dose intravenous nitroglycerin: a feasibility and outcome analysis. Ann Emerg Med. 2007;50:144–52.

    PubMed  Google Scholar 

  70. 70.

    Wang SY, Manyari DE, Scott-Douglas N, Smiseth OA, Smith ER, Tyberg JV. Splanchnic venous pressure-volume relation during experimental acute ischemic heart failure. Differential effects of hydralazine, enalaprilat, and nitroglycerin. Circulation. 1995;91:1205–12.

    CAS  PubMed  Google Scholar 

  71. 71.

    Annane D, Bellissant E, Pussard E, et al. Placebo-controlled, randomized, double-blind study of intravenous enalaprilat efficacy and safety in acute cardiogenic pulmonary edema. Circulation. 1996;94:1316–24.

    CAS  PubMed  Google Scholar 

  72. 72.

    Hirschl MM, Binder M, Bur A, et al. Clinical evaluation of different doses of intravenous enalaprilat in patients with hypertensive crises. Arch Intern Med. 1995;155:2217–23.

    CAS  PubMed  Google Scholar 

  73. 73.

    Ayaz SI, Sharkey CM, Kwiatkowski GM, et al. Intravenous enalaprilat for treatment of acute hypertensive heart failure in the emergency department. Int J Emerg Med. 2016;9:28.

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Gong B, Wu Z, Li Z. Efficacy and safety of nesiritide in patients with decompensated heart failure: a meta-analysis of randomised trials. BMJ Open. 2016;e008545:6.

    Google Scholar 

  75. 75.

    Wang TS, Hellkamp AS, Patel CB, Ezekowitz JA, Fonarow GC, Hernandez AF. Representativeness of RELAX-AHF clinical trial population in acute heart failure. Circ Cardiovasc Qual Outcomes. 2014;7:259–68.

    PubMed  Google Scholar 

  76. 76.

    Schiattarella GG, Altamirano F, Tong D, et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature. 2019;568:351–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Divakaran S, Loscalzo J. The role of nitroglycerin and other nitrogen oxides in cardiovascular therapeutics. J Am Coll Cardiol. 2017;70:2393–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Zamani P, Akers S, Soto-Calderon H, et al. Isosorbide Dinitrate, With or Without Hydralazine, Does Not Reduce Wave Reflections, Left Ventricular Hypertrophy, or Myocardial Fibrosis in Patients With Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc. 2017 Feb 20;6(2):e004262.

  79. 79.

    Beltrame JF, Zeitz CJ, Unger SA, et al. Nitrate therapy is an alternative to furosemide/morphine therapy in the management of acute cardiogenic pulmonary edema. J Card Fail. 1998;4:271–9.

    CAS  PubMed  Google Scholar 

  80. 80.

    Miró Ò, Gil V, Martín-Sánchez FJ, et al. Morphine use in the ed and outcomes of patients with acute heart failure: a propensity score-matching analysis based on the EAHFE Registry. Chest. 2017;152:821–32.

    PubMed  Google Scholar 

  81. 81.

    • Wilson SS, Kwiatkowski GM, Millis SR, Purakal JD, Mahajan AP, Levy PD. Use of nitroglycerin by bolus prevents intensive care unit admission in patients with acute hypertensive heart failure. Am J Emerg Med. 2017;35:126–31 An observational study showing the benefits of bolus IV nitroglycerin for H-AHF patients, particularly with reduction of ICU admission.

    PubMed  Google Scholar 

  82. 82.

    Patrick C, Ward B, Anderson J, et al. Feasibility, Effectiveness and Safety of Prehospital Intravenous Bolus Dose Nitroglycerin in Patients with Acute Pulmonary Edema. Prehosp Emerg Care. 2020;24(6):844-850.

  83. 83.

    Ho EC, Parker JD, Austin PC, et al. Impact of Nitrate Use on Survival in Acute Heart Failure: A Propensity-Matched Analysis. J Am Heart Assoc. 2016;12;5(2):e002531.

  84. 84.

    Shi J, Li Y, Xing C, et al. Urapidil, compared to nitroglycerin, has better clinical safety in the treatment of hypertensive patients with acute heart failure: a meta-analysis. Drug Des Devel Ther. 2019;13:161–72.

    CAS  PubMed  Google Scholar 

  85. 85.

    Yang W, Zhou YJ, Fu Y, et al. Efficacy and safety of intravenous urapidil for older hypertensive patients with acute heart failure: a multicenter randomized controlled trial. Yonsei Med J. 2017;58:105–13.

    CAS  PubMed  Google Scholar 

  86. 86.

    Hidalgo FJ, Anguita M, Castillo JC, et al. Effect of early treatment with ivabradine combined with beta-blockers versus beta-blockers alone in patients hospitalised with heart failure and reduced left ventricular ejection fraction (ETHIC-AHF): a randomised study. Int J Cardiol. 2016;217:7–11.

    PubMed  Google Scholar 

  87. 87.

    Lopatin YM, Cowie MR, Grebennikova AA, et al. Optimization of heart rate lowering therapy in hospitalized patients with heart failure: insights from the Optimize Heart Failure Care Program. Int J Cardiol. 2018;260:113–7.

    PubMed  Google Scholar 

  88. 88.

    Park JJ, Park HA, Cho HJ, et al. Beta-blockers and 1-year postdischarge mortality for heart failure and reduced ejection fraction and slow discharge heart rate. J Am Heart Assoc. 2019;e011121:8.

    Google Scholar 

  89. 89.

    Prins KW, Neill JM, Tyler JO, Eckman PM, Duval S. Effects of beta-blocker withdrawal in acute decompensated heart failure: a systematic review and meta-analysis. JACC Heart Fail. 2015;3:647–53.

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    •• Kitai T, Tang WHW, Xanthopoulos A, et al. Impact of early treatment with intravenous vasodilators and blood pressure reduction in acute heart failure. Open Heart. 2018;5:e000845 Observational evidence to support the long-held, but mostly consensus-driven, target of ≤25 reduction in SBP as the safest and most effective target for BP reduction in H-AHF.

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Kruschke JK. “Doing Bayesian Data Analysis: a Tutorial with R, JAGS, and STAN.” 2nd ed: Academic Press/Elsevier; 2015.

Download references

Author information



Corresponding author

Correspondence to Nicholas Harrison.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

Dr. Pang reports grants from AHRQ and AHA, outside the submitted work. Dr. Collins reports grants from NIH, PCORI, Astra Zeneca, Beckman Colter, personal fees from Boeringer Ingelheim, Ortho Clinical, Bristol Myers Squibb, outside the submitted work. Dr. Levy reports grants and personal fees from Novartis, grants from Edwards Lifescience, and grants and personal fees from BMS, during the conduct of the study. The other authors declare no conflicts of interest relevant to this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hypertension and Emergency Medicine

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harrison, N., Pang, P., Collins, S. et al. Blood Pressure Reduction in Hypertensive Acute Heart Failure. Curr Hypertens Rep 23, 11 (2021).

Download citation


  • Hypertensive acute heart failure
  • Hypertensive emergency
  • Vasodilator
  • Emergency department
  • Vasoconstriction
  • Hemodynamics
  • Clinical trial design