Emerging Therapeutic Potential of Mesenchymal Stem/Stromal Cells in Preeclampsia


Purpose of Review

Preeclampsia is a dangerous pregnancy condition affecting both the mother and offspring. It is a multifactorial disease with poorly understood pathogenesis, lacking effective treatments. Maternal immune response, inflammation and oxidative stress leading to endothelial dysfunction are the most prominent pathogenic processes implicated in preeclampsia development. Here, we give a detailed overview of the therapeutic applications and mechanisms of mesenchymal stem/stromal cells (MSCs) as a potential new treatment for preeclampsia.

Recent Findings

MSCs have gained growing attention due to low immunogenicity, easy cultivation and expansion in vitro. Accumulating evidence now suggests that MSCs act primarily through their secretomes facilitating paracrine signalling that leads to potent immunomodulatory, pro-angiogenic and regenerative therapeutic effects.


MSCs have been studied in different animal models of preeclampsia demonstrating promising result, which support further investigations into the therapeutic effects and mechanisms of MSC-based therapies in preeclampsia, steering these therapies into clinical trials.

This is a preview of subscription content, access via your institution.

Fig. 1


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Say L, Chou D, Gemmill A, Tunçalp Ö, Moller A-B, Daniels J, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health. 2014;2:e323–33.

  2. 2.

    Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Preeclampsia. Lancet. 2010;376:631–44.

    PubMed  Google Scholar 

  3. 3.

    Tranquilli AL, Dekker G, Magee L, Roberts J, Sibai BM, Steyn W, et al. The classification, diagnosis and management of the hypertensive disorders of pregnancy: a revised statement from the ISSHP. Pregnancy Hypertens An Int J Women’s Cardiovasc Health. 2014;4:97–104.

  4. 4.

    Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, de Groot CJM, Hofmeyr GJ. Preeclampsia. Lancet. 2016;387:999–1011.

    PubMed  Google Scholar 

  5. 5.

    Duley L. The global impact of preeclampsia and Eclampsia. Semin Perinatol. 2009;33:130–7.

    PubMed  Google Scholar 

  6. 6.

    Staff AC. The two-stage placental model of preeclampsia: an update. J Reprod Immunol. 2019;134–135:1–10.

    PubMed  Google Scholar 

  7. 7.

    Xiong X, Demianczuk NN, Saunders LD, Wang F-L, Fraser WD. Impact of preeclampsia and gestational hypertension on birth weight by gestational age. Am J Epidemiol. 2002;155:203–9.

    PubMed  Google Scholar 

  8. 8.

    Redman CW, Sargent IL, Staff AC. IFPA senior award lecture: making sense of preeclampsia – two placental causes of preeclampsia? Placenta. 2014;35:S20–5.

    PubMed  Google Scholar 

  9. 9.

    Staff AC, Redman CWG. The differences between early- and late-onset preeclampsia. Singapore: Springer; 2018. p. 157–72.

    Google Scholar 

  10. 10.

    Redman CWG. Preeclampsia and the placenta. Placenta. 1991;12:301–8.

    CAS  PubMed  Google Scholar 

  11. 11.

    Burton GJ, Woods AW, Jauniaux E, Kingdom JCP. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009;30:473–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Wu F, Tian F-J, Lin Y, Xu W-M. Oxidative stress: placenta function and dysfunction. Am J Reprod Immunol. 2016;76:258–71.

    PubMed  Google Scholar 

  13. 13.

    Faas MM, De Vos P. Innate immune cells in the placental bed in healthy pregnancy and preeclampsia. Placenta. 2018;69:125–33.

    CAS  PubMed  Google Scholar 

  14. 14.

    Smith SD, Dunk CE, Aplin JD, Harris LK, Jones RL. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol. 2009;174:1959–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Naruse K, Lash GE, Innes BA, Otun HA, Searle RF, Robson SC, et al. Localization of matrix metalloproteinase (MMP)-2, MMP-9 and tissue inhibitors for MMPs (TIMPs) in uterine natural killer cells in early human pregnancy. Hum Reprod. 2008;24:553–61.

  16. 16.

    Lyall F, Robson SC, Bulmer JN. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction. Hypertension. 2013;62:1046–54.

    CAS  PubMed  Google Scholar 

  17. 17.

    Robson A, Harris LK, Innes BA, Lash GE, Aljunaidy MM, Aplin JD, Baker PN, Robson SC, Bulmer JN. Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J 2012;26:4876–4885.

  18. 18.

    Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006;12:1065–74.

  19. 19.

    Lash GE, Schiessl B, Kirkley M, Innes BA, Cooper A, Searle RF, et al. Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy. J Leukoc Biol. 2006;80:572–80.

  20. 20.

    Lash GE, Naruse K, Robson A, Innes BA, Searle RF, Robson SC, et al. Interaction between uterine natural killer cells and extravillous trophoblast cells: effect on cytokine and angiogenic growth factor production. Hum Reprod. 2011;26:2289–95.

  21. 21.

    Fraser R, Whitley GS, Johnstone AP, Host AJ, Sebire NJ, Thilaganathan B, et al. Impaired decidual natural killer cell regulation of vascular remodelling in early human pregnancies with high uterine artery resistance. J Pathol. 2012;228:322–32.

  22. 22.

    Renaud SJ, Postovit L-M, Macdonald-Goodfellow SK, McDonald GT, Caldwell JD, Graham CH. Activated macrophages inhibit human cytotrophoblast invasiveness in vitro1. Biol Reprod. 2005;73:237–43.

    CAS  PubMed  Google Scholar 

  23. 23.

    Fraser R, Whitley GSJ, Thilaganathan B, Cartwright JE. Decidual natural killer cells regulate vessel stability: implications for impaired spiral artery remodelling. J Reprod Immunol. 2015;110:54–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Warning JC, McCracken SA, Morris JM. A balancing act: mechanisms by which the fetus avoids rejection by the maternal immune system. REPRODUCTION. 2011;141.

  25. 25.

    Heikkinen J, Möttönen M, Komi J, Alanen A, Lassila O. Phenotypic characterization of human decidual macrophages. Clin Exp Immunol. 2003;131:498–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Trundley A, Moffett A. Human uterine leukocytes and pregnancy. Tissue Antigens. 2004;63:1–12.

    CAS  PubMed  Google Scholar 

  27. 27.

    Levron Y, Dviri M, Segol I, Yerushalmi GM, Hourvitz A, Orvieto R, et al. The ‘immunologic theory’ of preeclampsia revisited: a lesson from donor oocyte gestations. Am J Obstet Gynecol. 2014;211:383.e1–5.

  28. 28.

    Xiong S, Sharkey AM, Kennedy PR, Gardner L, Farrell LE, Chazara O, et al. Maternal uterine NK cell-activating receptor KIR2DS1 enhances placentation. J Clin Invest. 2013;123:4264–72.

  29. 29.

    Choudhury RH, Dunk CE, Lye SJ, Aplin JD, Harris LK, Jones RL. Extravillous trophoblast and endothelial cell crosstalk mediates leukocyte infiltration to the early remodeling decidual spiral arteriole wall. J Immunol. 2017;198:4115 LP–4128.

    Google Scholar 

  30. 30.

    Fu B, Li X, Sun R, Tong X, Ling B, Tian Z, et al. Natural killer cells promote immune tolerance by regulating inflammatory TH17 cells at the human maternal-fetal interface. Proc Natl Acad Sci U S A. 2013;110:E231–40.

  31. 31.

    Lidström C, Matthiesen L, Berg G, Sharma S, Ernerudh J, Ekerfelt C. Cytokine secretion patterns of NK cells and macrophages in early human pregnancy decidua and blood: implications for suppressor macrophages in decidua. Am J Reprod Immunol. 2003;50:444–52.

    PubMed  Google Scholar 

  32. 32.

    Engert S, Rieger L, Kapp M, Becker JC, Dietl J, Kämmerer U. Profiling chemokines, cytokines and growth factors in human early pregnancy decidua by protein Array. Am J Reprod Immunol. 2007;58:129–37.

    CAS  PubMed  Google Scholar 

  33. 33.

    Gustafsson C, Mjösberg J, Matussek A, Geffers R, Matthiesen L, Berg G, et al. Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS One. 2008;3:1–9.

  34. 34.

    •• Nair S, Salomon C. Extracellular vesicles and their immunomodulatory functions in pregnancy. Semin Immunopathol. 2018;40:425–37. This review evaluates and summarises important communication pathways between immune and trophoblast cells via placental extracellular vesicles in pregnancy. It also outlines the gaps in the knowledge in relation to characterisation and isolation of different sub-types of vesicles and poorly understood molecular mechanisms of these interactions.

  35. 35.

    Mitchell MD, Peiris HN, Kobayashi M, Koh YQ, Duncombe G, Illanes SE, et al. Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol. 2015;213:S173–81.

  36. 36.

    Cim N, Kurdoglu M, Ege S, Yoruk I, Yaman G, Yildizhan R. An analysis on the roles of angiogenesis-related factors including serum vitamin D, soluble endoglin (sEng), soluble fms-like tyrosine kinase 1 (sFlt1), and vascular endothelial growth factor (VEGF) in the diagnosis and severity of late-onset preeclampsia. J Matern Neonatal Med. 2017;30:1602–7.

    CAS  Google Scholar 

  37. 37.

    Walshe TE, Dole VS, Maharaj ASR, Patten IS, Wagner DD, D’Amore PA. Inhibition of VEGF or TGF-β signaling activates endothelium and increases leukocyte rolling. Arterioscler Thromb Vasc Biol. 2009;29:1185–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Romundstad PR, Magnussen EB, Smith GD, Vatten LJ. Hypertension in pregnancy and later cardiovascular risk. Circulation. 2010;122:579–84.

    PubMed  Google Scholar 

  39. 39.

    Avagliano L, Pietro BG, Morabito A, Marconi AM. Abnormal spiral artery remodelling in the decidual segment during pregnancy: from histology to clinical correlation. J Clin Pathol. 2011;64:1064–8.

    PubMed  Google Scholar 

  40. 40.

    National Institute for Health and Clinical Excellence (NICE). Hypertension in pregnancy: RCOG Press; 2011.

  41. 41.

    • Lopez-Campos G, Bonner E, McClements L. An integrative biomedical informatics approach to elucidate the similarities between preeclampsia and hypertension. Stud Health Technol Inform. 2019;264:988–92. This paper identifies for the first time the overlapping mechanisms between preeclampsia and hypertension. While an association between these diseases is well-established, several overlapping pathogenic pathways were uncovered through bioinformatics analysis that contributes to understanding the complex pathogenesis of preeclampsia.

  42. 42.

    Rolnik DL, Wright D, Poon LC, O'Gorman N, Syngelaki A, de Paco Matallana C, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377:613–22.

  43. 43.

    Lykke JA, Langhoff-Roos J, Sibai BM, Funai EF, Triche EW, Paidas MJ. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension. 2009;53:944–51.

    CAS  PubMed  Google Scholar 

  44. 44.

    McNally R, Alqudah A, Obradovic D, McClements L. Elucidating the pathogenesis of preeclampsia using in vitro models of spiral uterine artery Remodelling. Curr Hypertens Rep. 2017;19:93.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    da Silva ML, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20:419–27.

    Google Scholar 

  47. 47.

    Grimes S, Bombay K, Lanes A, Walker M, Corsi DJ. Potential biological therapies for severe preeclampsia: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2019;19:163.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6:230–47.

    CAS  PubMed  Google Scholar 

  49. 49.

    Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc. 2009;4:102–6.

    CAS  PubMed  Google Scholar 

  50. 50.

    Araña M, Mazo M, Aranda P, Pelacho B, Prosper F. Adipose tissue-derived mesenchymal stem cells: isolation, expansion, and characterization. In: Kao RL, editor. Cell. Totowa, NJ: Cardiomyoplasty Methods Protoc. Humana Press; 2013. p. 47–61.

    Google Scholar 

  51. 51.

    Huang P, Lin LM, Wu XY, Tang QL, Feng XY, Lin GY, et al. Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-like cells in vitro. J Cell Biochem. 2010;109:747–54.

  52. 52.

    Pelekanos RA, Sardesai VS, Futrega K, Lott WB, Kuhn M, Doran MR. Isolation and expansion of mesenchymal stem/stromal cells derived from human placenta tissue. J Vis Exp. 2016. https://doi.org/10.3791/54204.

  53. 53.

    Zhao G, Zhou X, Chen S, Miao H, Fan H, Wang Z, et al. Differential expression of microRNAs in decidua-derived mesenchymal stem cells from patients with preeclampsia. J Biomed Sci. 2014;21:81.

  54. 54.

    •• Suvakov S, Cubro H, White WM, et al. Targeting senescence improves angiogenic potential of adipose-derived mesenchymal stem cells in patients with preeclampsia. Biol Sex Differ. 2019;10:49. This study demonstrated that MSCs derived from adipose tissue from women with diagnosed preeclampsia undergoing Caesarian section display impaired angiogenic function. Impaired function of MSCs is attributed to senescence suggesting a possible new insight into pathophysiological mechanism of preeclampsia and novel therapeutic approach using MSCs.

  55. 55.

    • Murray LMA, Krasnodembskaya AD. Concise review: intercellular communication via organelle transfer in the biology and therapeutic applications of stem cells. Stem Cells. 2019;37:14–25. This review compiles evidence of the mechanisms that mesenchymal stem cells use to modulate host cells, including transfer of cytoplasmic material and organelles. This information is critical for understanding the intercellular communication modes of MSCs in the context of their therapeutic application.

  56. 56.

    Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, et al. Exosome secreted by {MSC} reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4:214–22.

  57. 57.

    Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 2017;49:e346–6.

  58. 58.

    Wu P, Zhang B, Shi H, Qian H, Xu W. {MSC}-exosome: a novel cell-free therapy for cutaneous regeneration. Cytotherapy. 2018;20:291–301.

    PubMed  Google Scholar 

  59. 59.

    Prockop DJ. Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther. 2009;17:939–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Liu S, Wang J, Han R, Meng M, Wang W, Zhao Y, et al. Therapeutic effect of transplanted umbilical cord mesenchymal stem cells in a cynomolgus monkey model of multiple sclerosis. Am J Transl Res. 2019;11:2516–31.

  61. 61.

    Abdelmawgoud H, Saleh A. Anti-inflammatory and antioxidant effects of mesenchymal and hematopoietic stem cells in a rheumatoid arthritis rat model. Adv Clin Exp Med. 2018;27:873–80.

    PubMed  Google Scholar 

  62. 62.

    Yu J, Zheng C, Ren X, Li J, Liu M, Zhang L, et al. Intravenous administration of bone marrow mesenchymal stem cells benefits experimental autoimmune myasthenia gravis mice through an immunomodulatory action. Scand J Immunol. 2010;72:242–9.

  63. 63.

    Mohammadi Ayenehdeh J, Niknam B, Rasouli S, Hashemi SM, Rahavi H, Rezaei N, et al. Immunomodulatory and protective effects of adipose tissue-derived mesenchymal stem cells in an allograft islet composite transplantation for experimental autoimmune type 1 diabetes. Immunol Lett. 2017;188:21–31.

  64. 64.

    Wang L-L, Yu Y, Guan H-B, Qiao C. Effect of human umbilical cord mesenchymal stem cell transplantation in a rat model of preeclampsia. Reprod Sci. 2016;23:1058–70.

    PubMed  Google Scholar 

  65. 65.

    Fu L, Liu Y, Zhang D, Xie J, Guan H, Shang T. Beneficial effect of human umbilical cord-derived mesenchymal stem cells on an endotoxin-induced rat model of preeclampsia. Exp Ther Med. 2015;10:1851–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Liu L, Zhao G, Fan H, Zhao X, Li P, Wang Z, et al. Mesenchymal stem cells ameliorate Th1-induced preeclampsia-like symptoms in mice via the suppression of TNF-α expression. PLoS One. 2014;9:e88036.

  67. 67.

    • Zhang D, Fu L, Wang L, Lin L, Yu L, Zhang L, et al. Therapeutic benefit of mesenchymal stem cells in pregnant rats with angiotensin receptor agonistic autoantibody-induced hypertension: implications for immunomodulation and cytoprotection. Hypertens Pregnancy. 2017;36:247–58. This paper uses a rat model to demonstrate the potential of mesenchymal stem cells to ameliorate the effects of hypertension in pregnancy via immunomodulation and paracrine action.

  68. 68.

    •• Xiong Z-H, Wei J, Lu M-Q, Jin M-Y, Geng H-L. Protective effect of human umbilical cord mesenchymal stem cell exosomes on preserving the morphology and angiogenesis of placenta in rats with preeclampsia. Biomed Pharmacother. 2018;105:1240–7. This paper demonstrates, for the first time, pre-clinical data of a dose-dependent therapeutic response to mesenchymal stem cell-derived exosomes in rats with induced preeclampsia.

  69. 69.

    Sun J, Zhang Y, Song X, Zhu J, Zhu Q. The healing effects of conditioned medium derived from mesenchymal stem cells on radiation-induced skin wounds in rats. Cell Transplant. 2019;28:105–15.

    PubMed  Google Scholar 

  70. 70.

    Nuzzo A, Giuffrida D, Piccoli E, Zenerino C, Barrile R, Todros T, et al. Anti-inflammatory and pro-angiogenic effects of placental mesenchymal stromal cells conditioned media on preeclamptic placental tissue. Placenta. 2014;35:A87.

  71. 71.

    Choi JH, Jung J, Na K-H, Cho KJ, Yoon TK, Kim GJ. Effect of mesenchymal stem cells and extracts derived from the placenta on trophoblast invasion and immune responses. Stem Cells Dev. 2014;23:132–45.

    CAS  PubMed  Google Scholar 

  72. 72.

    Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28:1099–106.

    PubMed  Google Scholar 

  73. 73.

    Steinberg GK, Kondziolka D, Wechsler LR, et al. Clinical outcomes of transplanted modified bone marrow-derived mesenchymal stem cells in stroke. Stroke. 2016;47:1817–24.

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Premer C, Wanschel A, Porras V, Balkan W, Legendre-Hyldig T, Saltzman RG, et al. Mesenchymal stem cell secretion of SDF-1α modulates endothelial function in dilated cardiomyopathy. Front Physiol. 2019;10:1182.

  76. 76.

    Mathiasen AB, Qayyum AA, Jørgensen E, Helqvist S, Kofoed KF, Haack-Sørensen M, et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with ischaemic heart failure: final 4-year follow-up of the MSC-HF trial. EJHF https://doi.org/10.1002/ejhf.1700.

  77. 77.

    Lui NA, Jeyaram G, Henry A. Postpartum interventions to reduce long-term cardiovascular disease risk in women after hypertensive disorders of pregnancy: a systematic review. Front Cardiovasc Med. 2019;6:160.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Goldman-Wohl DS, Yagel S. Examination of distinct fetal and maternal molecular pathways suggests a mechanism for the development of preeclampsia. J Reprod Immunol. 2007;76:54–60.

    CAS  PubMed  Google Scholar 

  79. 79.

    Lin H, Mosmann TR, Guilbert L, Tuntipopipat S, Wegmann TG. Synthesis of T helper 2-type cytokines at the maternal-fetal interface. J Immunol (Baltimore, Md 1950). 1993;151:4562–73.

    CAS  Google Scholar 

  80. 80.

    de Groot CJM, van der Mast BJ, Visser W, De Kuiper P, Weimar W, Van Besouw NM. Preeclampsia is associated with increased cytotoxic T-cell capacity to paternal antigens. Am J Obstet Gynecol. 2010;203:496.e1–6.

    Google Scholar 

  81. 81.

    Saito S. Th17 cells and regulatory T cells: new light on pathophysiology of preeclampsia. Immunol Cell Biol. 2010;88:615–7.

    CAS  PubMed  Google Scholar 

  82. 82.

    Manavalan JS, Rossi PC, Vlad G, Piazza F, Yarilina A, Cortesini R, et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol. 2003;11:245–58.

  83. 83.

    Siegel G, Schäfer R, Dazzi F. The immunosuppressive properties of mesenchymal stem cells. Transplantation. 2009;87:S45–9.

    PubMed  Google Scholar 

  84. 84.

    Yi T, Song SU. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res. 2012;35:213–21.

    CAS  PubMed  Google Scholar 

  85. 85.

    Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–22.

    CAS  PubMed  Google Scholar 

  86. 86.

    Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol (Baltimore, Md 1950). 2006;177:2080–7.

    CAS  Google Scholar 

  87. 87.

    Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol. 2005;35:1482–90.

  88. 88.

    Taglauer ES, Trikhacheva AS, Slusser JG, Petroff MG. Expression and function of PDCD1 at the human maternal-fetal interface1. Biol Reprod. 2008;79:562–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 2010;5:e10088.

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Fang X, Abbott J, Cheng L, Colby JK, Lee JW, Levy BD, et al. Human mesenchymal stem (stromal) cells promote the resolution of acute lung injury in part through Lipoxin A4. J Immunol. 2015;195:875–81.

  91. 91.

    Lee JW, Fang X, Krasnodembskaya A, Howard JP, Matthay MA. Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells. 2011;29:913–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Liu K, Guo L, Zhou Z, Pan M, Yan C. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res. 2019;123:74–80.

    CAS  PubMed  Google Scholar 

  93. 93.

    Huang W, Lv B, Zeng H, Shi D, Liu Y, Chen F, et al. Paracrine factors secreted by MSCs promote astrocyte survival associated with GFAP downregulation after ischemic stroke via p38 MAPK and JNK. J Cell Physiol. 2015;230:2461–75.

  94. 94.

    Ma Y, Hao X, Zhang S, Zhang J. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Res Treat. 2012;133:473–85.

    CAS  PubMed  Google Scholar 

  95. 95.

    Chen L, Xu Y, Zhao J, Zhang Z, Yang R, Xie J, et al. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS One. 2014;9:e96161.

  96. 96.

    Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y, et al. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells. 2015;33:2158–68.

  97. 97.

    Park HW, Moon H-E, Kim H-SR, et al. Human umbilical cord blood-derived mesenchymal stem cells improve functional recovery through thrombospondin1, pantraxin3, and vascular endothelial growth factor in the ischemic rat brain. J Neurosci Res. 2015;93:1814–25.

    CAS  PubMed  Google Scholar 

  98. 98.

    Koch JM, D’Souza SS, Schwahn DJ, Dixon I, Hacker TA. Mesenchymoangioblast-derived mesenchymal stromal cells inhibit cell damage, tissue damage and improve peripheral blood flow following hindlimb ischemic injury in mice. Cytotherapy. 2016;18:219–28.

    CAS  PubMed  Google Scholar 

  99. 99.

    Al-Rifai R, Nguyen P, Bouland N, Terryn C, Kanagaratnam L, Poitevin G, et al. In vivo efficacy of endothelial growth medium stimulated mesenchymal stem cells derived from patients with critical limb ischemia. J Transl Med. 2019;17:261.

  100. 100.

    Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5:54–63.

  101. 101.

    Katsha AM, Ohkouchi S, Xin H, Kanehira M, Sun R, Nukiwa T, et al. Paracrine factors of multipotent stromal cells ameliorate lung injury in an elastase-induced emphysema model. Mol Ther. 2011;19:196–203.

  102. 102.

    Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014;15:4142–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Komaki M, Numata Y, Morioka C, et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res Ther. 2017;8:219.

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Liang X, Zhang L, Wang S, Han Q, Zhao RC. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci. 2016;129:2182 LP–189.

    Google Scholar 

  105. 105.

    Xiong X, Sun Y, Wang X. HIF1A/miR-20a-5p/TGFβ1 axis modulates adipose-derived stem cells in a paracrine manner to affect the angiogenesis of human dermal microvascular endothelial cells. J Cell Physiol. 2019;1–11.

  106. 106.

    Li X, Song Y, Liu F, Liu D, Miao H, Ren J, et al. Long non-coding RNA MALAT1 promotes proliferation, angiogenesis, and immunosuppressive properties of mesenchymal stem cells by inducing VEGF and IDO. J Cell Biochem. 2017;118:2780–91.

  107. 107.

    Todd N, Mcnally R, Alqudah A, Krasnodembskaya A, Mcclements L. Mesenchymal stem cells influence trophoblast and endothelial cell functionality important for prevention of preeclampsia via a novel anti-angiogenic protein, FKBPL. J Hypertens. 2018. https://doi.org/10.1097/01.hjh.0000539414.44731.25.

  108. 108.

    Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med. 2014;92:387–97.

    CAS  PubMed  Google Scholar 

  109. 109.

    Hwang JH, Lee MJ, Seok OS, Paek YC, Cho GJ, Seol HJ, et al. Cytokine expression in placenta-derived mesenchymal stem cells in patients with preeclampsia and normal pregnancies. Cytokine. 2010;49:95–101.

  110. 110.

    Chen S, Zhao G, Miao H, Tang R, Song Y, Hu Y, et al. MicroRNA-494 inhibits the growth and angiogenesis-regulating potential of mesenchymal stem cells. FEBS Lett. 2015;589:710–7.

  111. 111.

    Li P, Guo W, Du L, Zhao J, Wang Y, Liu L, et al. microRNA-29b contributes to preeclampsia through its effects on apoptosis, invasion and angiogenesis of trophoblast cells. Clin Sci. 2013;124:27–40.

  112. 112.

    Hoogduijn MJ, Lombardo E. Concise review: mesenchymal stromal cells anno 2019: dawn of the therapeutic era? Stem Cells Transl Med. 2019;8:1126–1134.

  113. 113.

    Meisel R. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103:4619–21.

    CAS  PubMed  Google Scholar 

  114. 114.

    Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. 2007;109:228–34.

  115. 115.

    Sala E, Genua M, Petti L, et al. Mesenchymal stem cells reduce colitis in mice via release of {TSG}6, independently of their localization to the intestine. Gastroenterology. 2015;149:163–176.e20.

    CAS  PubMed  Google Scholar 

  116. 116.

    de Araújo FV, Carrillo-Gálvez AB, Martin F, Anderson P. TGF-B and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev. 2018;43:25–37.

    Google Scholar 

  117. 117.

    Németh K, Leelahavanichkul A, Yuen PST, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2 dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2008;15:42–9.

  118. 118.

    van der Kraan PM. Transforming growth factor-beta induced chrondrogenic differentiation of bone marrow-derived mesenchymal stem cells: role of Smad signaling pathways. In: Stem cells cancer stem cells, vol. 10. Netherlands: Springer; 2013. p. 85–91.

    Google Scholar 

  119. 119.

    Jerkic M, Masterson C, Ormesher L, Gagnon S, Goyal S, Rabani R, et al. Overexpression of {IL}-10 enhances the efficacy of human umbilical-cord-derived mesenchymal stromal cells in E. coli pneumosepsis. J Clin Med. 2019;8:847.

  120. 120.

    Gonzalez-King H, Garcia NA, Ontoria-Oviedo I, Ciria M, Montero JA, Sepúlveda P. Hypoxia inducible factor-1a potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem Cells. 2017;35:1747–59.

    CAS  PubMed  Google Scholar 

  121. 121.

    Hu S, Park J, Liu A, Lee J, Zhang X, Hao Q, et al. Mesenchymal stem cell microvesicles restore protein permeability across primary cultures of injured human lung microvascular endothelial cells. Stem Cells Transl Med. 2018;7:615–24.

  122. 122.

    Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O’Kane CM, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 2017;196:1275–86.

  123. 123.

    Pan Q, Wang Y, Lan Q, Wu W, Li Z, Ma X, et al. Exosomes derived from mesenchymal stem cells ameliorate hypoxia/reoxygenation-injured ECs via transferring MicroRNA-126. Stem Cells. 2019:1–13.

  124. 124.

    Galleu A, Riffo-Vasquez Y, Trento C, et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med. 2017;9:eaam7828.

    PubMed  Google Scholar 

  125. 125.

    Weiss DJ, English K, Krasnodembskaya A, Isaza-Correa JM, Hawthorne IJ, Mahon BP. The necrobiology of mesenchymal stromal cells affects therapeutic efficacy. Front Immunol. 2019;10:1228

  126. 126.

    Weiss ARR, Dahlke MH. Immunomodulation by mesenchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol. 2019;10:1191

  127. 127.

    Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018;22:824–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Cheung TS, Galleu A, von Bonin M, Bornhäuser M, Dazzi F. Apoptotic mesenchymal stromal cells induce prostaglandin E2 in monocytes: implications for the monitoring of mesenchymal stromal cells activity. HemaSphere. 2019;3:402–3.

    Google Scholar 

  129. 129.

    Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol. 2012;3:297.

  130. 130.

    de Witte SFH, Luk F, Parraga JMS, et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells. 2018;36:602–15.

  131. 131.

    Chekir C, Nakatsuka M, Noguchi S, Konishi H, Kamada Y, Sasaki A, et al. Accumulation of advanced glycation end products in women with preeclampsia: possible involvement of placental oxidative and nitrative stress. Placenta. 2006;27:225–33.

  132. 132.

    Chen X, Zhang Y, Wang W, Liu Z, Meng J, Han Z. Mesenchymal stem cells modified with heme oxygenase-1 have enhanced paracrine function and attenuate lipopolysaccharide-induced inflammatory and oxidative damage in pulmonary microvascular endothelial cells. Cell Physiol Biochem. 2018;49:101–22.

    CAS  PubMed  Google Scholar 

  133. 133.

    Zhang Z, Zhu W, Ren H, Zhao X, Wang S, Ma H, et al. Mesenchymal stem cells increase expression of heme oxygenase-1 leading to anti-inflammatory activity in treatment of acute liver failure. Stem Cell Res Ther. 2017;8:1–13.

  134. 134.

    Camara NOS, Soares MP. Heme oxygenase-1 (HO-1), a protective gene that prevents chronic graft dysfunction. Free Radic Biol Med. 2005;38:426–35.

  135. 135.

    Tögel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol. 2005;289:F31–42.

    PubMed  Google Scholar 

  136. 136.

    Liu H, McTaggart SJ, Johnson DW, Gobe GC. Anti-oxidant pathways are stimulated by mesenchymal stromal cells in renal repair after ischemic injury. Cytotherapy. 2012;14:162–72.

    CAS  PubMed  Google Scholar 

  137. 137.

    Chen Y-T, Sun C-K, Lin Y-C, et al. Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med. 2011;9:51.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Zhuo W, Liao L, Xu T, Wu W, Yang S, Tan J. Mesenchymal stem cells ameliorate ischemia-reperfusion-induced renal dysfunction by improving the antioxidant/oxidant balance in the ischemic kidney. Urol Int. 2011;86:191–6.

    CAS  PubMed  Google Scholar 

  139. 139.

    Torralba D, Baixauli F, Sánchez-Madrid F. Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev Biol. 2016;4:107.

  140. 140.

    Paliwal S, Chaudhuri R, Agrawal A, Mohanty S. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci. 2018;25:1–12.

  141. 141.

    Liu K, Ji K, Guo L, Wu W, Lu H, Shan P, et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res. 2014;92:10–8.

  142. 142.

    • Fergie N, Todd N, McClements L, McAuley D, O’Kane C, Krasnodembskaya A. Hypercapnic acidosis induces mitochondrial dysfunction and impairs the ability of mesenchymal stem cells to promote distal lung epithelial repair. FASEB J. 2019;33:5585–98. This paper highlights the altered behaviour of MSCs specifically, lacking the ability to transfer mitochondria in hypercapnic/high CO2 patients; suggesting that different environmental conditions can affect the therapeutic potential of MSCs.

  143. 143.

    Vaka VR, McMaster KM, Cunningham MW, Ibrahim T, Hazlewood R, Usry N, et al. Role of mitochondrial dysfunction and reactive oxygen species in mediating hypertension in the reduced uterine perfusion pressure rat model of preeclampsia. Hypertension. 2018;72:703–11.

  144. 144.

    McCarthy C, Kenny LC. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia. Sci Rep. 2016;6:32683.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Vakhshiteh F, Atyabi F, Ostad SN. Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy. Int J Nanomedicine. 2019;14:2847–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Sunderland N, Hennessy A, Makris A. Animal models of preeclampsia. Am J Reprod Immunol. 2011;65:533–41.

    CAS  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to L. McClements.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preeclampsia

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suvakov, S., Richards, C., Nikolic, V. et al. Emerging Therapeutic Potential of Mesenchymal Stem/Stromal Cells in Preeclampsia. Curr Hypertens Rep 22, 37 (2020). https://doi.org/10.1007/s11906-020-1034-8

Download citation


  • Preeclampsia
  • Mesenchymal stem cells
  • Extracellular vesicles
  • Biological therapies preeclampsia